Do you want to publish a course? Click here

On the Secrecy Performance of Random VLC Networks with Imperfect CSI and Protected Zone

83   0   0.0 ( 0 )
 Added by Jin-Yuan Wang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

This paper investigates the physical-layer security for a random indoor visible light communication (VLC) network with imperfect channel state information (CSI) and a protected zone. The VLC network consists of three nodes, i.e., a transmitter (Alice), a legitimate receiver (Bob), and an eavesdropper (Eve). Alice is fixed in the center of the ceiling, and the emitted signal at Alice satisfies the non-negativity and the dimmable average optical intensity constraint. Bob and Eve are randomly deployed on the receiver plane. By employing the protected zone and considering the imperfect CSI, the stochastic characteristics of the channel gains for both the main and the eavesdropping channels is first analyzed. After that, the closed-form expressions of the average secrecy capacity and the lower bound of secrecy outage probability are derived, respectively. Finally, Monte-Carlo simulations are provided to verify the accuracy of the derived theoretical expressions. Moreover, the impacts of the nominal optical intensity, the dimming target, the protected zone and the imperfect CSI on secrecy performance are discussed, respectively.



rate research

Read More

In this paper, we present the ergodic sum secrecy rate (ESSR) analysis of an underlay spectrum sharing non-orthogonal multiple access (NOMA) system. We consider the scenario where the power transmitted by the secondary transmitter (ST) is constrained by the peak tolerable interference at multiple primary receivers (PRs) as well as the maximum transmit power of the ST. The effect of channel estimation error is also taken into account in our analysis. We derive exact and asymptotic closed-form expressions for the ESSR of the downlink NOMA system, and show that the performance can be classified into two distinct regimes, i.e., it is dictated either by the interference constraint or by the power constraint. Our results confirm the superiority of the NOMA-based system over its orthogonal multiple access (OMA) based counterpart. More interestingly, our results show that NOMA helps in maintaining the secrecy rate of the strong user while significantly enhancing the secrecy performance of the weak user as compared to OMA. The correctness of the proposed investigation is corroborated through Monte Carlo simulation.
Employing reconfigurable intelligent surfaces (RIS) is emerging as a game-changer candidate, thanks to their unique capabilities in improving the power efficiency and supporting the ubiquity of future wireless communication systems. Conventionally, a wireless network design has been limited to the communicating end points, i.e., the transmitter and the receiver. In general, we take advantage of the imposed channel state knowledge to manipulate the transmitted signal and to improve the detection quality at the receiver. With the aid of RISs, and to some extent, the propagation channel has become a part of the design problem. In this paper, we consider a single-input single-output cooperative network and investigate the effect of using RISs in enhancing the physical layer security of the system. Specifically, we formulate an optimization problem to study the effectiveness of the RIS in improving the system secrecy by introducing a weighted variant of the secrecy capacity definition. Numerical simulations are provided to show the design trade-offs and to present the superiority of RIS-assisted networks over the conventional ones in terms of the systems secrecy performance.
343 - Jin-Yuan Wang , Hong Ge , Min Lin 2019
In this paper, we investigate the physical-layer security for a spatial modulation (SM) based indoor visible light communication (VLC) system, which includes multiple transmitters, a legitimate receiver, and a passive eavesdropper (Eve). At the transmitters, the SM scheme is employed, i.e., only one transmitter is active at each time instant. To choose the active transmitter, a uniform selection (US) scheme is utilized. Two scenarios are considered: one is with non-negativity and average optical intensity constraints, the other is with non-negativity, average optical intensity and peak optical intensity constraints. Then, lower and upper bounds on the secrecy rate are derived for these two scenarios. Besides, the asymptotic behaviors for the derived secrecy rate bounds at high signal-to-noise ratio (SNR) are analyzed. To further improve the secrecy performance, a channel adaptive selection (CAS) scheme and a greedy selection (GS) scheme are proposed to select the active transmitter. Numerical results show that the lower and upper bounds of the secrecy rate are tight. At high SNR, small asymptotic performance gaps exist between the derived lower and upper bounds. Moreover, the proposed GS scheme has the best performance, followed by the CAS scheme and the US scheme.
Small cell networks with dynamic time-division duplex (D-TDD) have emerged as a potential solution to address the asymmetric traffic demands in 5G wireless networks. By allowing the dynamic adjustment of cell-specific UL/DL configuration, D-TDD flexibly allocates percentage of subframes to UL and DL transmissions to accommodate the traffic within each cell. However, the unaligned transmissions bring in extra interference which degrades the potential gain achieved by D-TDD. In this work, we propose an analytical framework to study the performance of multi-antenna small cell networks with clustered D-TDD, where cell clustering is employed to mitigate the interference from opposite transmission direction in neighboring cells. With tools from stochastic geometry, we derive explicit expressions and tractable tight upper bounds for success probability and network throughput. The proposed analytical framework allows to quantify the effect of key system parameters, such as UL/DL configuration, cluster size, antenna number, and SINR threshold. Our results show the superiority of the clustered D-TDD over the traditional D-TDD, and reveal the fact that there exists an optimal cluster size for DL performance, while UL performance always benefits from a larger cluster.
In this paper, we investigate the performance of a reconfigurable intelligent surface (RIS)-assisted dual-hop mixed radio-frequency underwater wireless optical communication (RF-UWOC) system. An RIS is an emerging and low-cost technology that aims to enhance the strength of the received signal, thus improving the system performance. In the considered system setup, a ground source does not have a reliable direct link to a given marine buoy and communicates with it through an RIS installed on a building. In particular, the buoy acts as a relay that sends the signal to an underwater destination. In this context, analytical expressions for the outage probability (OP), average bit error rate (ABER), and average channel capacity (ACC) are derived assuming fixed-gain amplify-and-forward (AF) and decode-and-forward (DF) relaying protocols at the marine buoy. Moreover, asymptotic analyses of the OP and ABER are carried out in order to gain further insights from the analytical frameworks. In particular, the system diversity order is derived and it is shown to depend on the RF link parameters and on the detection schemes of the UWOC link. Finally, it is demonstrated that RIS-assisted systems can effectively improve the performance of mixed dual-hop RF-UWOC systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا