No Arabic abstract
We study the vertex classification problem on a graph whose vertices are in $k (kgeq 2)$ different communities, edges are only allowed between distinct communities, and the number of vertices in different communities are not necessarily equal. The observation is a weighted adjacency matrix, perturbed by a scalar multiple of the Gaussian Orthogonal Ensemble (GOE), or Gaussian Unitary Ensemble (GUE) matrix. For the exact recovery of the maximum likelihood estimation (MLE) with various weighted adjacency matrices, we prove sharp thresholds of the intensity $sigma$ of the Gaussian perturbation. These weighted adjacency matrices may be considered as natural models for the electric network. Surprisingly, these thresholds of $sigma$ do not depend on whether the sample space for MLE is restricted to such classifications that the number of vertices in each group is equal to the true value. In contrast to the $ZZ_2$-synchronization, a new complex version of the semi-definite programming (SDP) is designed to efficiently implement the community detection problem when the number of communities $k$ is greater than 2, and a common region (independent of $k$) for $sigma$ such that SDP exactly recovers the true classification is obtained.
We study the community detection problem on a Gaussian mixture model, in which vertices are divided into $kgeq 2$ distinct communities. The major difference in our model is that the intensities for Gaussian perturbations are different for different entries in the observation matrix, and we do not assume that every community has the same number of vertices. We explicitly find the threshold for the exact recovery of the maximum likelihood estimation. Applications include the community detection on hypergraphs.
In this paper, we study the information theoretic bounds for exact recovery in sub-hypergraph models for community detection. We define a general model called the $m-$uniform sub-hypergraph stochastic block model ($m-$ShSBM). Under the $m-$ShSBM, we use Fanos inequality to identify the region of model parameters where any algorithm fails to exactly recover the planted communities with a large probability. We also identify the region where a Maximum Likelihood Estimation (MLE) algorithm succeeds to exactly recover the communities with high probability. Our bounds are tight and pertain to the community detection problems in various models such as the planted hypergraph stochastic block model, the planted densest sub-hypergraph model, and the planted multipartite hypergraph model.
We give a simple distributed algorithm for computing adjacency matrix eigenvectors for the communication graph in an asynchronous gossip model. We show how to use this algorithm to give state-of-the-art asynchronous community detection algorithms when the communication graph is drawn from the well-studied stochastic block model. Our methods also apply to a natural alternative model of randomized communication, where nodes within a community communicate more frequently than nodes in different communities. Our analysis simplifies and generalizes prior work by forging a connection between asynchronous eigenvector computation and Ojas algorithm for streaming principal component analysis. We hope that our work serves as a starting point for building further connections between the analysis of stochastic iterative methods, like Ojas algorithm, and work on asynchronous and gossip-type algorithms for distributed computation.
A message passing algorithm is derived for recovering communities within a graph generated by a variation of the Barab{a}si-Albert preferential attachment model. The estimator is assumed to know the arrival times, or order of attachment, of the vertices. The derivation of the algorithm is based on belief propagation under an independence assumption. Two precursors to the message passing algorithm are analyzed: the first is a degree thresholding (DT) algorithm and the second is an algorithm based on the arrival times of the children (C) of a given vertex, where the children of a given vertex are the vertices that attached to it. Comparison of the performance of the algorithms shows it is beneficial to know the arrival times, not just the number, of the children. The probability of correct classification of a vertex is asymptotically determined by the fraction of vertices arriving before it. Two extensions of Algorithm C are given: the first is based on joint likelihood of the children of a fixed set of vertices; it can sometimes be used to seed the message passing algorithm. The second is the message passing algorithm. Simulation results are given.
We study a semidefinite programming (SDP) relaxation of the maximum likelihood estimation for exactly recovering a hidden community of cardinality $K$ from an $n times n$ symmetric data matrix $A$, where for distinct indices $i,j$, $A_{ij} sim P$ if $i, j$ are both in the community and $A_{ij} sim Q$ otherwise, for two known probability distributions $P$ and $Q$. We identify a sufficient condition and a necessary condition for the success of SDP for the general model. For both the Bernoulli case ($P={{rm Bern}}(p)$ and $Q={{rm Bern}}(q)$ with $p>q$) and the Gaussian case ($P=mathcal{N}(mu,1)$ and $Q=mathcal{N}(0,1)$ with $mu>0$), which correspond to the problem of planted dense subgraph recovery and submatrix localization respectively, the general results lead to the following findings: (1) If $K=omega( n /log n)$, SDP attains the information-theoretic recovery limits with sharp constants; (2) If $K=Theta(n/log n)$, SDP is order-wise optimal, but strictly suboptimal by a constant factor; (3) If $K=o(n/log n)$ and $K to infty$, SDP is order-wise suboptimal. The same critical scaling for $K$ is found to hold, up to constant factors, for the performance of SDP on the stochastic block model of $n$ vertices partitioned into multiple communities of equal size $K$. A key ingredient in the proof of the necessary condition is a construction of a primal feasible solution based on random perturbation of the true cluster matrix.