No Arabic abstract
Inelastic neutron scattering study has been performed in an S=3/2 bilayer honeycomb lattice compound Bi3Mn4O12(NO3) at ambient and high magnetic fields. Relatively broad and monotonically dispersive magnetic excitations were observed at ambient field, where no long range magnetic order exists. In the magnetic field-induced long-range ordered state at 10 T, the magnetic dispersions become slightly more intense, albeit still broad as in the disordered state, and two excitation gaps, probably originating from an easy-plane magnetic anisotropy and intrabilayer interactions, develop. Analyzing the magnetic dispersions using the linear spin-wave theory, we estimated the intraplane and intrabilayer magnetic interactions, which are almost consistent with those determined by ab initio density functional theory calculations [M. Alaei et al., Phys. Rev. B 96, 140404(R) (2017)], except the 3rd and 4th neighbor intrabilayer interactions. Most importantly, as predicted by the theory, there is no significant frustration in the honeycomb plane but frustrating intrabilayer interactions probably give rise to the disordered ground state.
Frustrated bilayer quantum magnets have attracted attention as flat-band spin systems with unconventional thermodynamic properties. We study the low-temperature properties of a frustrated honeycomb-lattice bilayer spin-$frac{1}{2}$ isotropic ($XXX$) Heisenberg antiferromagnet in a magnetic field by means of an effective low-energy theory using exact diagonalizations and quantum Monte Carlo simulations. Our main focus is on the magnetization curve and the temperature dependence of the specific heat indicating a finite-temperature phase transition in high magnetic fields.
High field electron spin resonance, nuclear magnetic resonance and magnetization studies addressing the ground state of the quasi two-dimensional spin-1/2 honeycomb lattice compound InCu{2/3}V{1/3}O{3} are reported. Uncorrelated finite size structural domains occurring in the honeycomb planes are expected to inhibit long range magnetic order. Surprisingly, ESR data reveal the development of two collinear antiferromagnetic (AFM) sublattices below ~ 20 K whereas NMR results show the presence of the staggered internal field. Magnetization data evidence a spin reorientation transition at ~ 5.7 T. Quantum Monte-Carlo calculations show that switching on the coupling between the honeycomb spin planes in a finite size cluster yields a Neel-like AFM spin structure with a substantial staggered magnetization at finite temperatures. This may explain the occurrence of a robust AFM state in InCu{2/3}V{1/3}O{3} despite an unfavorable effect of structural disorder.
Motivated by the observation of a disordered spin ground state in the $S=3/2$ material Bi$_3$Mn$_4$O$_{12}$NO$_3$, we study the ground state properties and excitation spectra of the $S=3/2$ (and for comparison $S=1/2$) bilayer Heisenberg model on the honeycomb lattice, with and without frustrating further neighbor interactions. We use series expansions around the Neel state to calculate properties of the magnetically ordered phase. Furthermore, series expansions in $1/lambda=J_1/J_{perp}$, where $J_1$ is an in-plane exchange constant and $J_perp$ is the exchange constant between the layers are used to study properties of the spin singlet phase. For the unfrustrated case, our results for the phase transitions are in very good agreement with recent Quantum Monte Carlo studies. We also obtain the excitation spectra in the disordered phase and study the change in the critical $lambda$ when frustrating exchange interactions are added to the $S=3/2$ system and find a rapid suppression of the ordered phase with frustration. Implications for the material Bi$_3$Mn$_4$O$_{12}$NO$_3$ are discussed.
We report the synthesis and characterization of a new quantum magnet [2-[Bis(2-hydroxybenzyl)aminomethyl]pyridine]Ni(II)-trimer (BHAP-Ni3) in single-crystalline form. Our combined experimental and theoretical investigations reveal an exotic spin state that stabilizes a robust 2/3 magnetization plateau between 7 and 20 T in an external magnetic field. AC-susceptibility measurements show the absence of any magnetic order/glassy state down to 60 mK. The magnetic ground state is disordered and specific-heat measurements reveal the gapped nature of the spin excitations. Most interestingly, our theoretical modeling suggests that the 2/3 magnetization plateau emerges due to the interplay between antiferromagnetic Heisenberg and biquadratic exchange interactions within nearly isolated spin $S$ = 1 triangles.
The S=3/2 Kitaev honeycomb model (KHM) has defied an analytical as well as numerical understanding because it is not exactly soluble like its S=1/2 brethren and in contrast to other spin-S Kitaev models numerical methods are plagued by a massive pile up of low energy states. Here, we uncover the phase diagram of the S=3/2 KHM and find gapped and gapless quantum spin liquids (QSLs) generally coexisting with spin quadrupolar orders. Employing an SO(6) Majorana fermion representation of spin-3/2s, we find an exact representation of the conserved plaquette fluxes in terms of static Z$_2$ gauge fields akin to the S=1/2 KHM which enables us to treat the remaining interacting matter fermion sector in a parton mean-field theory. The latter provides an explanation for the extensive near degeneracy of low energy states in the gapless phase via the appearance of almost flat Majorana bands close to zero energy. Our parton description is in remarkable quantitative agreement with numerical simulations using the density matrix renormalization group method, and is furthermore corroborated by the addition of a single ion anisotropy which continuously connects the gapless Dirac QSL of our model with that of the S=1/2 KHM. We discuss the implications of our findings for materials realization of higher S=3/2 KHMs and the stability of the QSL phase with respect to additional interactions.