We consider a remote state estimation problem in the presence of an eavesdropper over packet dropping links. A smart sensor transmits its local estimates to a legitimate remote estimator, in the course of which an eavesdropper can randomly overhear the transmission. This problem has been well studied for unstable dynamical systems, but seldom for stable systems. In this paper, we target at stable and marginally stable systems and aim to design an event-triggered scheduling strategy by minimizing the expected error covariance at the remote estimator and keeping that at the eavesdropper above a user-specified lower bound. To this end, we model the evolution of the error covariance as an infinite recurrent Markov chain and develop a recurrence relation to describe the stationary distribution of the state at the eavesdropper. Monotonicity and convergence properties of the expected error covariance are further investigated and employed to solve the optimization problem. Numerical examples are provided to validate the theoretical results.