Do you want to publish a course? Click here

Canadian Astronomy on Maunakea: On Respecting Indigenous Rights

93   0   0.0 ( 0 )
 Added by Hilding Neilson
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

(Abridged) Canadian astronomy has, for decades, benefited from access to observatories and participating in international consortia on one of the best astronomical sites in the world: Maunakea. However, Maunakea is part of the unceded territory of the Native Hawaiian peoples and has always been of special significance to Hawaiian culture. The use of the summit and its science reserve has created tensions in the past decade, particularly with the development of the Thirty Meter Telescope. A meaningful and respectful response from the International astronomy community is still lacking. It is expected that the LRP 2020 will continue to support Canadian astronomy on Maunakea so a better official statement on the position and involvement of CASCA should be prepared. In this paper we present recommendations, based on the United Nation Declaration for the Rights of Indigenous Peoples, for the Canadian astronomical community to better support Indigenous rights on Maunakea and Hawaii while providing clear guidelines for the astronomical community to participate in activities conducted on Indigenous land. This framework is designed to motivate conversations with Indigenous communities regarding our place on Indigenous lands and our roles, and responsibilities toward the communities we are working with. Furthermore, we propose this framework as a basis for engaging with communities around the world regarding consent for astronomical facilities.



rate research

Read More

326 - Tracy Webb 2013
We survey the present landscape in submillimetre astronomy for Canada and describe a plan for continued engagement in observational facilities to ~2020. Building on Canadas decadal Long Range Plan process, we emphasize that continued involvement in a large, single-dish facility is crucial given Canadas substantial investment in ALMA and numerous PI-led submillimetre experiments. In particular, we recommend: i) an extension of Canadian participation in the JCMT until at least the unique JCMT Legacy Survey program is able to realize the full scientific potential provided by the world-leading SCUBA-2 instrument; and ii) involvement of the entire Canadian community in CCAT, with a large enough share in the partnership for Canadian astronomers to participate at all levels of the facility. We further recommend continued participation in ALMA development, involvement in many focused PI-led submillimetre experiments, and partnership in SPICA.
[Highly abridged, from executive summary] As much as NewSpace presents opportunities, there are significant challenges that must be overcome, requiring engagement with policy makers to influence domestic and international space governance. Failure to do so could result in a range of long-lasting negative outcomes for science and space stewardship. How will the Canadian astronomical community engage with NewSpace? What are the implications for NewSpace on the astro-environment, including Earth orbits, lunar and cis-lunar orbits, and surfaces of celestial bodies? This white paper analyzes the rapid changes in space use and what those changes could mean for Canadian astronomers. Our recommendations are as follows: Greater cooperation between the astronomical and the Space Situational Awareness communities is needed. Build closer ties between the astronomical community and Global Affairs Canada (GAC). Establish a committee for evaluating the astro-environmental impacts of human space use, including on and around the Moon and other bodies. CASCA and the Tri-Council should coordinate to identify programs that would enable Canadian astronomers to participate in pay-for-use services at appropriate funding levels. CASCA should continue to foster a relationship with CSA, but also build close ties to the private space industry. Canadian-led deep space missions are within Canadas capabilities, and should be pursued.
207 - Asantha Cooray 2015
Astronomers in CANDELS outline changes for the academic system to promote a smooth transition for junior scientists from academia to industry.
As the oldest science common to all human cultures, astronomy has a unique connection to indigenous knowledge (IK) and the long history of indigenous scientific contributions. Many STEM disciplines, agencies and institutions have begun to do the work of recruiting and retaining underrepresented minorities, including indigenous, Native American and Native Hawaiian professionals. However, with the expansion of telescope facilities on sacred tribal or indigenous lands in recent decades, and the current urgency of global crises related to climate, food/water sovereignty and the future of humanity, science and astronomy have the opportunity more than ever to partner with indigenous communities and respect the wealth of sustainable practices and solutions inherently present in IK. We share a number of highly successful current initiatives that point the way to a successful model of collaboration with integrity between western and indigenous scholars. Such models deserve serious consideration for sustained funding at local and institutional levels. We also share six key recommendations for funding agencies that we believe will be important first steps for nonindigenous institutions to fully dialog and partner with indigenous communities and IK to build together towards a more inclusive, sustainable and empowering scientific enterprise.
We present the integration status for `imaka, the ground-layer adaptive optics (GLAO) system on the University of Hawaii 2.2-meter telescope on Maunakea, Hawaii. This wide-field GLAO pathfinder system exploits Maunakeas highly confined ground layer and weak free-atmosphere to push the corrected field of view to ~1/3 of a degree, an areal field approaching an order of magnitude larger than any existing or planned GLAO system, with a FWHM ~ 0.33 arcseconds in the visible and near infrared. We discuss the unique design aspects of the instrument, the driving science cases and how they impact the system, and how we will demonstrate these cases on the sky.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا