Nonlinear generalised functions on manifolds


Abstract in English

This paper lays the foundations for a nonlinear theory of differential geometry that is developed in a subsequent paper which is based on Colombeau algebras of tensor distributions on manifolds. We adopt a new approach and construct a global theory of algebras of generalised functions on manifolds based on the concept of smoothing operators. This produces a generalisation of previous theories in a form which is suitable for applications to differential geometry. The generalised Lie derivative is introduced and shown to commute with the embedding of distributions. It is also shown that the covariant derivative of a generalised scalar field commutes with this embedding at the level of association.

Download