Do you want to publish a course? Click here

Interface growth driven by a single active particle

113   0   0.0 ( 0 )
 Added by Mustansir Barma
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study pattern formation, fluctuations and scaling induced by a growth-promoting active walker on an otherwise static interface. Active particles on an interface define a simple model for energy consuming proteins embedded in the plasma membrane, responsible for membrane deformation and cell movement. In our model, the active particle overturns local valleys of the interface into hills, simulating growth, while itself sliding and seeking new valleys. In 1D, this overturn-slide-search dynamics of the active particle causes it to move superdiffusively in the transverse direction while pulling the immobile interface upwards. Using Monte Carlo simulations, we find an emerging tent-like mean profile developing with time, despite large fluctuations. The roughness of the interface follows scaling with the growth, dynamic and roughness exponents, derived using simple arguments as $beta=2/3, z=3/2, alpha=1/2$ respectively, implying a breakdown of the usual scaling law $beta = alpha/z$, owing to very local growth of the interface. The transverse displacement of the puller on the interface scales as $sim t^{2/3}$ and the probability distribution of its displacement is bimodal, with an unusual linear cusp at the origin. Both the mean interface pattern and probability distribution display scaling. A puller on a static 2D interface also displays aspects of scaling in the mean profile and probability distribution. We also show that a pusher on a fluctuating interface moves subdiffusively leading to a separation of time scale in pusher motion and interface response.

rate research

Read More

We study the statistical mechanics of a single active slider on a fluctuating interface, by means of numerical simulations and theoretical arguments. The slider, which moves by definition towards the interface minima, is active as it also stimulates growth of the interface. Even though such a particle has no counterpart in thermodynamic systems, active sliders may provide a simple model for ATP-dependent membrane proteins that activate cytoskeletal growth. We find a wide range of dynamical regimes according to the ratio between the timescales associated with the slider motion and the interface relaxation. If the interface dynamics is slow, the slider behaves like a random walker in a random envinronment which, furthermore, is able to escape environmental troughs by making them grow. This results in different dynamic exponens to the interface and the particle: the former behaves as an Edward-Wilkinson surface with dynamic exponent 2 whereas the latter has dynamic exponent 3/2. When the interface is fast, we get sustained ballistic motion with the particle surfing a membrane wave created by itself. However, if the interface relaxes immediately (i.e., it is infinitely fast), particle motion becomes symmetric and goes back to diffusive. Due to such a rich phenomenology, we propose the active slider as a toy model of fundamental interest in the field of active membranes and, generally, whenever the system constituent can alter the environment by spending energy.
We study, via extensive numerical simulations, the force-velocity curve of an active particle advected by a steady laminar flow, in the nonlinear response regime. Our model for an active particle relies on a colored noise term that mimics its persistent motion over a time scale $tau_A$. We find that the active particle dynamics shows non-trivial effects, such as negative differential and absolute mobility (NDM and ANM, respectively). We explore the space of the model parameters and compare the observed behaviors with those obtained for a passive particle ($tau_A=0$) advected by the same laminar flow. Our results show that the phenomena of NDM and ANM are quite robust with respect to the details of the considered noise: in particular for finite $tau_A$ a more complex force-velocity relation can be observed.
An essential parameter for crystal growth is the kinetic coefficient given by the proportionality between super-cooling and average growth velocity. Here we show that this coefficient can be computed in a single equilibrium simulation using the interface pinning method where two-phase configurations are stabilized by adding an spring-like bias field coupling to an order-parameter that discriminates between the two phases. Crystal growth is a Smoluchowski process and the crystal growth rate can therefore be computed from the terminal exponential relaxation of the order parameter. The approach is investigated in detail for the Lennard-Jones model. We find that the kinetic coefficient scales as the inverse square-root of temperature along the high temperature part of the melting line. The practical usability of the method is demonstrated by computing the kinetic coefficient of the elements Na, Mg, Al and Si from first principles. It is briefly discussed how a generalized version of the method is an alternative to forward flux sampling methods for computing rates along trajectories of rare events.
The effect of geometry in the statistics of textit{nonlinear} universality classes for interface growth has been widely investigated in recent years and it is well known to yield a split of them into subclasses. In this work, we investigate this for the textit{linear} classes of Edwards-Wilkinson (EW) and of Mullins-Herring (MH) in one- and two-dimensions. From comparison of analytical results with extensive numerical simulations of several discrete models belonging to these classes, as well as numerical integrations of the growth equations on substrates of fixed size (flat geometry) or expanding linearly in time (radial geometry), we verify that the height distributions (HDs), the spatial and the temporal covariances are universal, but geometry-dependent. In fact, the HDs are always Gaussian and, when defined in terms of the so-called KPZ ansatz $[h simeq v_{infty} t + (Gamma t)^{beta} chi]$, their probability density functions $P(chi)$ have mean null, so that all their cumulants are null, except by their variances, which assume different values in the flat and radial cases. The shape of the (rescaled) covariance curves is analyzed in detail and compared with some existing analytical results for them. Overall, these results demonstrate that the splitting of such university classes is quite general, being not restricted to the nonlinear ones.
57 - M.T. Batchelor 1998
A stochastic partial differential equation along the lines of the Kardar-Parisi-Zhang equation is introduced for the evolution of a growing interface in a radial geometry. Regular polygon solutions as well as radially symmetric solutions are identified in the deterministic limit. The polygon solutions, of relevance to on-lattice Eden growth from a seed in the zero-noise limit, are unstable in the continuum in favour of the symmetric solutions. The asymptotic surface width scaling for stochastic radial interface growth is investigated through numerical simulations and found to be characterized by the same scaling exponent as that for stochastic growth on a substrate.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا