Do you want to publish a course? Click here

The aeolian-erosion barrier for the growth of metre-size objects in protoplanetary-discs

86   0   0.0 ( 0 )
 Added by Mor Rozner
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Aeolian-erosion is a destructive process which can erode small-size planetary objects through their interaction with a gaseous environment. Aeolian-erosion operates in a wide range of environments and under various conditions. Aeolian-erosion has been extensively explored in the context of geophysics in terrestrial planets. Here we show that aeolian-erosion of cobbles, boulders and small planetesimals in protoplanetary-discs can constitute a significant barrier for the early stages of planet formation. We use analytic calculations to show that under the conditions prevailing in protoplanetary-discs small bodies ($10-10^4 rm{m}$) are highly susceptible to gas-drag aeolian-erosion. At this size-range aeolian-erosion can efficiently erode the planetesimals down to tens-cm size and quench any further growth of such small bodies. It thereby raises potential difficulties for channels suggested to alleviate the metre-size barrier. Nevertheless, the population of $sim$decimetre-size cobbles resulting from aeolian-erosion might boost the growth of larger (>km size) planetesimals and planetary embryos through increasing the efficiency of pebble-accretion, once/if such large planetesimals and planetary embryos exist in the disc.



rate research

Read More

The discovery of numerous debris disks around white dwarfs (WDs), gave rise to extensive study of such disks and their role in polluting WDs, but the formation and evolution of these disks is not yet well understood. Here we study the role of aeolian (wind) erosion in the evolution of solids in WD debris disks. Aeolian erosion is a destructive process that plays a key role in shaping the properties and size-distribution of planetesimals, boulders and pebbles in gaseous protoplanetary disks. Our analysis of aeolian erosion in WD debris disks shows it can also play an important role in these environments. We study the effects of aeolian erosion under different conditions of the disk, and its erosive effect on planetesimals and boulders of different sizes. We find that solid bodies smaller than $sim 5 rm{km}$ will be eroded within the short disk lifetime. We compare the role of aeolian erosion in respect to other destructive processes such as collisional fragmentation and thermal ablation. We find that aeolian erosion is the dominant destructive process for objects with radius $lesssim 10^3 rm{cm}$ and at distances $lesssim 0.6 R_odot$ from the WD. Thereby, aeolian erosion constitutes the main destructive pathway linking fragmentational collisions operating on large objects with sublimation of the smallest objects and Poynting-Robertson drag, which leads to the accretion of the smallest particles onto the photosphere of WDs, and the production of polluted WDs.
The formation of the first planetesimals and the final growth of planetary cores relies on the abundance of small pebbles. The efficiencies of both the streaming instability (SI) process, suggested to catalyze the early growth of planetesimals, and the pebble-accretion process, suggested to accelerate the growth of planetary cores, depend on the sizes of solids residing in the disk. In particular, these processes were found to be sensitive to size distribution of solids, and efficient planetesimal formation and growth through these channels require a limited pebble size distribution. Here we show that aeolian erosion, a process that efficiently grinds down boulders into a mono-sized distribution of pebbles, provides a natural upper limit for the maximal pebble sizes (in terms of their Stokes number). We find the dependence of this upper limit on the radial separation, disk age, turbulence strength, and the grain-size composition of the boulders in the disk. SI is favorable in areas with a Stokes number less than 0.1, which is found in the inner sub-astronomical-unit regions of the disk. This upper limit shapes the size distribution of small pebbles and thereby catalyzes the early onset of planetesimal formation due to SI, and the later core accretion growth through pebble accretion.
We present the first ALMA survey of protoplanetary discs at 3 mm, targeting 36 young stellar objects in the Lupus star-forming region with deep observations (sensitivity 20-50 microJy/beam) at ~0.35 resolution (~50 au). Building on previous ALMA surveys at 0.89 and 1.3 mm that observed the complete sample of Class II discs in Lupus at a comparable resolution, we aim to assess the level of grain growth in the relatively young Lupus region. We measure 3 mm integrated fluxes, from which we derive disc-averaged 1-3 mm spectral indices. We find that the mean spectral index of the observed Lupus discs is $alpha_mathrm{1-3 mm}=2.23pm0.06$, in all cases $alpha_mathrm{1-3 mm}<3.0$, with a tendency for larger spectral indices in the brightest discs and in transition discs. Furthermore, we find that the distribution of spectral indices in Lupus discs is statistically indistinguishable from that of the Taurus and Ophiuchus star-forming regions. Assuming the emission is optically thin, the low values $alpha_mathrm{1-3 mm}leq 2.5$ measured for most discs can be interpreted with the presence of grains larger than 1 mm. The observations of the faint discs in the sample can be explained without invoking the presence of large grains, namely through a mixture of optically thin and optically thick emission from small grains. However, the bright (and typically large) discs do inescapably require the presence of millimeter-sized grains in order to have realistic masses. Based on a disc mass argument, our results challenge previous claims that the presence of optically thick sub-structures may be a universal explanation for the empirical millimeter size-luminosity correlation observed at 0.89 mm.
We present ATCA results of a 3 and 7 mm continuum survey of 20 T Tauri stars in the Chamaeleon and Lupus star forming regions. This survey aims to identify protoplanetary discs with signs of grain growth. We detected 90% of the sources at 3 and 7 mm, and determined the spectral slopes, dust opacity indices and dust disc masses. We also present temporal monitoring results of a small sub-set of sources at 7, 15 mm and 3+6 cm to investigate grain growth to cm sizes and constrain emission mechanisms in these sources. Additionally, we investigated the potential correlation between grain growth signatures in the infrared (10 mu m silicate feature) and millimetre (1-3 mm spectral slope, {alpha}). Eleven sources at 3 and 7 mm have dominant thermal dust emission up to 7 mm, with 7 of these having a 1-3 mm dust opacity index less than unity, suggesting grain growth up to at least mm sizes. The Chamaeleon sources observed at 15 mm and beyond show the presence of excess emission from an ionised wind and/or chromo- spheric emission. Long-timescale monitoring at 7 mm indicated that cm-sized pebbles are present in at least four sources. Short-timescale monitoring at 15 mm suggests the excess emission is from thermal free-free emission. Finally, a weak correlation was found between the strength of the 10 mum feature and {alpha}, suggesting simultaneous dust evolution of the inner and outer parts of the disc. This survey shows that grain growth up to cm-sized pebbles and the presence of excess emission at 15 mm and beyond are common in these systems, and that temporal monitoring is required to disentangle these emission mechanisms.
It is expected that a pressure bump can be formed at the inner edge of a dead-zone, and where vortices can develop through the Rossby Wave Instability (RWI). It has been suggested that self-gravity can significantly affect the evolution of such vortices. We present the results of 2D hydrodynamical simulations of the evolution of vortices forming at a pressure bump in self-gravitating discs with Toomre parameter in the range $4-30$. We consider isothermal plus non-isothermal disc models that employ either the classical $beta$ prescription or a more realistic treatment for cooling. The main aim is to investigate whether the condensating effect of self-gravity can stabilize vortices in sufficiently massive discs. We confirm that in isothermal disc models with ${cal Q} gtrsim 15$, vortex decay occurs due to the vortex self-gravitational torque. For discs with $3lesssim {cal Q} lesssim 7$, the vortex develops gravitational instabilities within its core and undergoes gravitational collapse, whereas more massive discs give rise to the formation of global eccentric modes. In non-isothermal discs with $beta$ cooling, the vortex maintains a turbulent core prior to undergoing gravitational collapse for $beta lesssim 0.1$, whereas it decays if $beta ge 1$. In models that incorpore both self-gravity and a better treatment for cooling, however, a stable vortex is formed with aspect ratio $chi sim 3-4$. Our results indicate that self-gravity significantly impacts the evolution of vortices forming in protoplanetary discs, although the thermodynamical structure of the vortex is equally important for determining its long-term dynamics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا