Do you want to publish a course? Click here

Nematic alignment of self-propelled particles in the macroscopic regime

100   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Starting from a particle model describing self-propelled particles interacting through nematic alignment, we derive a macroscopic model for the particle density and mean direction of motion. We first propose a mean-field kinetic model of the particle dynamics. After diffusive rescaling of the kinetic equation, we formally show that the distribution function converges to an equilibrium distribution in particle direction, whose local density and mean direction satisfies a cross-diffusion system. We show that the system is consistent with symmetries typical of a nematic material. The derivation is carried over by means of a Hilbert expansion. It requires the inversion of the linearized collision operator for which we show that the generalized collision invariants, a concept introduced to overcome the lack of momentum conservation of the system, plays a central role. This cross diffusion system poses many new challenging questions.



rate research

Read More

119 - Amic Frouvelle 2009
We consider the macroscopic model derived by Degond and Motsch from a time-continuous version of the Vicsek model, describing the interaction orientation in a large number of self-propelled particles. In this article, we study the influence of a slight modification at the individual level, letting the relaxation parameter depend on the local density and taking in account some anisotropy in the observation kernel (which can model an angle of vision). The main result is a certain robustness of this macroscopic limit and of the methodology used to derive it. With some adaptations to the concept of generalized collisional invariants, we are able to derive the same system of partial differential equations, the only difference being in the definition of the coefficients, which depend on the density. This new feature may lead to the loss of hyperbolicity in some regimes. We provide then a general method which enables us to get asymptotic expansions of these coefficients. These expansions shows, in some effective situations, that the system is not hyperbolic. This asymptotic study is also useful to measure the influence of the angle of vision in the final macroscopic model, when the noise is small.
The symmetry of the alignment mechanism in systems of polar self-propelled particles determines the possible macroscopic large-scale patterns that can emerge. Here we compare polar and apolar alignment. These systems share some common features like giant number fluctuations in the ordered phase and self-segregation in the form of bands near the onset of orientational order. Despite these similarities, there are essential differences like the symmetry of the ordered phase and the stability of the bands.
We study numerically and analytically a model of self-propelled polar disks on a substrate in two dimensions. The particles interact via isotropic repulsive forces and are subject to rotational noise, but there is no aligning interaction. As a result, the system does not exhibit an ordered state. The isotropic fluid phase separates well below close packing and exhibits the large number fluctuations and clustering found ubiquitously in active systems. Our work shows that this behavior is a generic property of systems that are driven out of equilibrium locally, as for instance by self propulsion.
The unipolar and bipolar macroscopic quantum models derived recently for instance in the area of charge transport are considered in spatial one-dimensional whole space in the present paper. These models consist of nonlinear fourth-order parabolic equation for unipolar case or coupled nonlinear fourth-order parabolic system for bipolar case. We show for the first time the self-similarity property of the macroscopic quantum models in large time. Namely, we show that there exists a unique global strong solution with strictly positive density to the initial value problem of the macroscopic quantum models which tends to a self-similar wave (which is not the exact solution of the models) in large time at an algebraic time-decay rate.
The goal of these lecture notes is to present in a unified way various models for the dynamics of aligning self-propelled rigid bodies at different scales and the links between them. The models and methods are inspired from [12,13], but, in addition, we introduce a new model and apply on it the same methods. While the new model has its own interest, our aim is also to emphasize the methods by demonstrating their adaptability and by presenting them in a unified and simplified way. Furthermore, from the various microscopic models we derive the same macroscopic model, which is a good indicator of its universality.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا