No Arabic abstract
This letter introduces a novel speech enhancement method in the Hilbert-Huang Transform domain to mitigate the effects of acoustic impulsive noises. The estimation and selection of noise components is based on the impulsiveness index of decomposition modes. Speech enhancement experiments are conducted considering five acoustic noises with different impulsiveness index and non-stationarity degrees under various signal-to-noise ratios. Three speech enhancement algorithms are adopted as baseline in the evaluation analysis considering spectral and time domains. The proposed solution achieves the best results in terms of objective quality measures and similar speech intelligibility rates to the competitive methods.
The intelligibility of natural speech is seriously degraded when exposed to adverse noisy environments. In this work, we propose a deep learning-based speech modification method to compensate for the intelligibility loss, with the constraint that the root mean square (RMS) level and duration of the speech signal are maintained before and after modifications. Specifically, we utilize an iMetricGAN approach to optimize the speech intelligibility metrics with generative adversarial networks (GANs). Experimental results show that the proposed iMetricGAN outperforms conventional state-of-the-art algorithms in terms of objective measures, i.e., speech intelligibility in bits (SIIB) and extended short-time objective intelligibility (ESTOI), under a Cafeteria noise condition. In addition, formal listening tests reveal significant intelligibility gains when both noise and reverberation exist.
Previous studies have proven that integrating video signals, as a complementary modality, can facilitate improved performance for speech enhancement (SE). However, video clips usually contain large amounts of data and pose a high cost in terms of computational resources and thus may complicate the SE system. As an alternative source, a bone-conducted speech signal has a moderate data size while manifesting speech-phoneme structures, and thus complements its air-conducted counterpart. In this study, we propose a novel multi-modal SE structure in the time domain that leverages bone- and air-conducted signals. In addition, we examine two ensemble-learning-based strategies, early fusion (EF) and late fusion (LF), to integrate the two types of speech signals, and adopt a deep learning-based fully convolutional network to conduct the enhancement. The experiment results on the Mandarin corpus indicate that this newly presented multi-modal (integrating bone- and air-conducted signals) SE structure significantly outperforms the single-source SE counterparts (with a bone- or air-conducted signal only) in various speech evaluation metrics. In addition, the adoption of an LF strategy other than an EF in this novel SE multi-modal structure achieves better results.
The intelligibility of speech severely degrades in the presence of environmental noise and reverberation. In this paper, we propose a novel deep learning based system for modifying the speech signal to increase its intelligibility under the equal-power constraint, i.e., signal power before and after modification must be the same. To achieve this, we use generative adversarial networks (GANs) to obtain time-frequency dependent amplification factors, which are then applied to the input raw speech to reallocate the speech energy. Instead of optimizing only a single, simple metric, we train a deep neural network (DNN) model to simultaneously optimize multiple advanced speech metrics, including both intelligibility- and quality-related ones, which results in notable improvements in performance and robustness. Our system can not only work in non-realtime mode for offline audio playback but also support practical real-time speech applications. Experimental results using both objective measurements and subjective listening tests indicate that the proposed system significantly outperforms state-ofthe-art baseline systems under various noisy and reverberant listening conditions.
Due to the unprecedented breakthroughs brought about by deep learning, speech enhancement (SE) techniques have been developed rapidly and play an important role prior to acoustic modeling to mitigate noise effects on speech. To increase the perceptual quality of speech, current state-of-the-art in the SE field adopts adversarial training by connecting an objective metric to the discriminator. However, there is no guarantee that optimizing the perceptual quality of speech will necessarily lead to improved automatic speech recognition (ASR) performance. In this study, we present TENET, a novel Time-reversal Enhancement NETwork, which leverages the transformation of an input noisy signal itself, i.e., the time-reversed version, in conjunction with the siamese network and complex dual-path transformer to promote SE performance for noise-robust ASR. Extensive experiments conducted on the Voicebank-DEMAND dataset show that TENET can achieve state-of-the-art results compared to a few top-of-the-line methods in terms of both SE and ASR evaluation metrics. To demonstrate the model generalization ability, we further evaluate TENET on the test set of scenarios contaminated with unseen noise, and the results also confirm the superiority of this promising method.
Speech enhancement algorithms based on deep learning have been improved in terms of speech intelligibility and perceptual quality greatly. Many methods focus on enhancing the amplitude spectrum while reconstructing speech using the mixture phase. Since the clean phase is very important and difficult to predict, the performance of these methods will be limited. Some researchers attempted to estimate the phase spectrum directly or indirectly, but the effect is not ideal. Recently, some studies proposed the complex-valued model and achieved state-of-the-art performance, such as deep complex convolution recurrent network (DCCRN). However, the computation of the model is huge. To reduce the complexity and further improve the performance, we propose a novel method using discrete cosine transform as the input in this paper, called deep cosine transform convolutional recurrent network (DCTCRN). Experimental results show that DCTCRN achieves state-of-the-art performance both on objective and subjective metrics. Compared with noisy mixtures, the mean opinion score (MOS) increased by 0.46 (2.86 to 3.32) absolute processed by the proposed model with only 2.86M parameters.