Do you want to publish a course? Click here

Low-frequency variability in massive stars: Core generation or surface phenomenon?

75   0   0.0 ( 0 )
 Added by Daniel Lecoanet
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Bowman et al. (2019) reported low-frequency photometric variability in 164 O- and B-type stars observed with K2 and TESS. They interpret these motions as internal gravity waves, which could be excited stochastically by convection in the cores of these stars. The detection of internal gravity waves in massive stars would help distinguish between massive stars with convective or radiative cores, determine core size, and would provide important constraints on massive star structure and evolution. In this work, we study the observational signature of internal gravity waves generated by core convection. We calculate the textit{wave transfer function}, which links the internal gravity wave amplitude at the base of the radiative zone to the surface luminosity variation. This transfer function varies by many orders of magnitude for frequencies $lesssim 1 , {rm d}^{-1}$, and has regularly-spaced peaks near $1 , {rm d}^{-1}$ due to standing modes. This is inconsistent with the observed spectra which have smooth ``red noise profiles, without the predicted regularly-spaced peaks. The wave transfer function is only meaningful if the waves stay predominately linear. We next show that this is the case: low frequency traveling waves do not break unless their luminosity exceeds the radiative luminosity of the star; and, the observed luminosity fluctuations at high frequencies are so small that standing modes would be stable to nonlinear instability. These simple calculations suggest that the observed low-frequency photometric variability in massive stars is not due to internal gravity waves generated in the core of these stars. We finish with a discussion of (sub)surface convection, which produces low-frequency variability in low-mass stars, very similar to that observed in Bowman et al. (2019) in higher mass stars.



rate research

Read More

The convection that takes place in the innermost shells of massive stars plays an important role in the formation of core-collapse supernova explosions. Upon encountering the supernova shock, additional turbulence is generated, amplifying the explosion. In this work, we study how the convective perturbations evolve during the stellar collapse. Our main aim is to establish their physical properties right before they reach the supernova shock. To this end, we solve the linearized hydrodynamics equations perturbed on a stationary background flow. The latter is approximated by the spherical transonic Bondi accretion, while the convective perturbations are modeled as a combination of entropy and vorticity waves. We follow their evolution from large radii, where convective shells are initially located, down to small radii, where they are expected to encounter the accretion shock above the proto-neutron star. Considering typical vorticity perturbations with a Mach number $sim 0.1$ and entropy perturbations with magnitude $sim 0.05 k_mathrm{b}/mathrm{baryon}$, we find that the advection of these perturbations down to the shock generates acoustic waves with a relative amplitude $delta p/gamma p lesssim 10%$, in agreement with published numerical simulations. The velocity perturbations consist of contributions from acoustic and vorticity waves with values reaching $sim 10%$ of the sound speed ahead of the shock. The perturbation amplitudes decrease with increasing $ell$ and initial radii of the convective shells.
High-precision photometric observations have revealed ubiquitous stochastic low-frequency photometric variability in early type stars. It has been suggested that this variability arises due to either subsurface convection or internal gravity waves launched by the convective core. Here we show that relevant properties of convection in subsurface convective layers correlate very well with the timescale and amplitude of stochastic low-frequency photometric variability, as well as with the amplitude of macroturbulence. We suggest that low-frequency, stochastic photometric variability and surface turbulence in massive stars are caused by the the presence of subsurface convection. We show that an explanation for the observed surface photometric variability and macroturbulence relying on convective core driven internal gravity waves encounters a number of difficulties and seems unlikely to be able to explain the observed trends.
We use a suite of SPH simulations to investigate the susceptibility of protoplanetary discs to the effects of self-gravity as a function of star-disc properties. We also include passive irradiation from the host star using different models for the stellar luminosities. The critical disc-to-star mass ratio for axisymmetry (for which we produce criteria) increases significantly for low-mass stars. This could have important consequences for increasing the potential mass reservoir in a proto Trappist-1 system, since even the efficient Ormel et al. (2017) formation model will be influenced by processes like external photoevaporation, which can rapidly and dramatically deplete the dust reservoir. The aforementioned scaling of the critical $M_d/M_*$ for axisymmetry occurs in part because the Toomre $Q$ parameter has a linear dependence on surface density (which promotes instability) and only an $M_*^{1/2}$ dependence on shear (which reduces instability), but also occurs because, for a given $M_d/M_*$, the thermal evolution depends on the host star mass. The early phase stellar irradiation of the disc (for which the luminosity is much higher than at the zero age main sequence, particularly at low stellar masses) can also play a key role in significantly reducing the role of self-gravity, meaning that even Solar mass stars could support axisymmetric discs a factor two higher in mass than usually considered possible. We apply our criteria to the DSHARP discs with spirals, finding that self-gravity can explain the observed spirals so long as the discs are optically thick to the host star irradiation.
We present variability analysis of data from the Northern Sky Variability Survey (NSVS). Using the clustering method which defines variable candidates as outliers from large clusters, we cluster 16,189,040 light curves, having data points at more than 15 epochs, as variable and non-variable candidates in 638 NSVS fields. Variable candidates are selected depending on how strongly they are separated from the largest cluster and how rarely they are grouped together in eight dimensional space spanned by variability indices. All NSVS light curves are also cross-correlated to the Infrared Astronomical Satellite, AKARI, Two Micron All Sky Survey, Sloan Digital Sky Survey (SDSS), and Galaxy Evolution Explorer objects as well as known objects in the SIMBAD database. The variability analysis and cross-correlation results are provided in a public online database which can be used to select interesting objects for further investigation. Adopting conservative selection criteria for variable candidates, we find about 1.8 million light curves as possible variable candidates in the NSVS data, corresponding to about 10% of our entire NSVS samples. Multi-wavelength colors help us find specific types of variability among the variable candidates. Moreover, we also use morphological classification from other surveys such as SDSS to suppress spurious cases caused by blending objects or extended sources due to the low angular resolution of the NSVS.
Using data from the (intermediate) Palomar Transient Factory (iPTF), we characterize the time variability of ~500 massive stars in M31. Our sample is those stars which are spectrally typed by Massey and collaborators, including Luminous Blue Variables, Wolf-Rayets, and warm and cool supergiants. We use the high-cadence, long-baseline (~5 years) data from the iPTF survey, coupled with data-processing tools that model complex features in the light curves. We find widespread photometric (R-band) variability in the upper Hertzsprung Russell diagram (or CMD) with an increasing prevalence of variability with later spectral types. Red stars (V-I>1.5) exhibit larger amplitude fluctuations than their bluer counterparts. We extract a characteristic variability timescale, tch, via wavelet transformations that are sensitive to both continuous and localized fluctuations. Cool supergiants are characterized by longer timescales (>100 days) than the hotter stars. The latter have typical timescales of tens of days but cover a wider range, from our resolution limit of a few days to longer than 100 days timescales. Using a 60-night block of data straddling two nights with a cadence of around 2 minutes, we extracted tch in the range 0.1--10 days with amplitudes of a few percent for 13 stars. Though there is broad agreement between the observed variability characteristics in the different parts of the upper CMD with theoretical predictions, detailed comparison requires models with a more comprehensive treatment of the various physical processes operating in these stars such as pulsation, subsurface convection, and the effect of binary companions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا