Do you want to publish a course? Click here

Scalar bosons with Coulomb potentials in a cosmic string background: Scattering and bound states

146   0   0.0 ( 0 )
 Added by Luis B Castro
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The relativistic quantum motion of scalar bosons under the influence of a full vector (minimal $A^{mu}$ and nonminimal $X^{mu}$) and scalar ($V_{s}$) interactions embedded in the background of a cosmic string is explored in the context of the Klein-Gordon equation. Considering Coulomb interactions, the effects of this topological defect in equation of motion, phase shift and S-matrix are analyzed and discussed. Bound-state solutions are obtained from poles of the S-matrix and it is shown that bound-state solutions are possible only for a restrict range of coupling constants.



rate research

Read More

71 - Yurii A. Sitenko 2021
The relativistic charged spinor matter field is quantized in the background of a straight cosmic string with nonvanishing transverse size. The most general boundary conditions ensuring the impossibility for matter to penetrate through the edge of the string core are considered. The role of discrete symmetries is elucidated, and analytic expressions for the temporal and spatial components of the induced vacuum current are derived in the case of either $P$ or $CT$ invariant boundary condition with two parameters varying arbitrarily from point to point of the edge. The requirement of physical plausibility for the global induced vacuum characteristics is shown to remove completely an arbitrariness in boundary conditions. We find out that a magnetic field is induced in the vacuum and that a sheath in the form of a tube of the magnetic flux lines encloses a cosmic string. The dependence of the induced vacuum magnetic field strength on the string flux and tension, as well as on the transverse size of the string and on the distance from the string, is unambiguously determined.
In the present paper, we study the vacuum bosonic currents in the geometry of a compactified cosmic string in the background of the de Sitter spacetime. The currents are induced by magnetic fluxes, one running along the cosmic string and another one enclosed by the compact dimension. To develop the analysis, we obtain the complete set of normalized bosonic wave-functions obeying a quasiperiodicity condition. In this context, we calculate the azimuthal and axial current densities and we show that these quantities are explicitly decomposed into two contributions: one originating from the geometry of a straight uncompactified cosmic string and the other induced by the compactification. We also compare the results with the literature in the case of a massive fermionic field in the same geometry.
In this paper the relativistic quantum dynamics of a spin-1/2 neutral particle with a magnetic moment $mu$ in the cosmic string spacetime is reexamined by applying the von Neumann theory of self--adjoint extensions. Contrary to previous studies where the interaction between the spin and the line of charge is neglected, here we consider its effects. This interaction gives rise to a point interaction: $boldsymbol{ abla} cdot mathbf{E}= (2lambda/alpha)delta(r)/r$. Due to the presence of the Dirac delta function, by applying an appropriated boundary condition provided by the theory of self--adjoint extensions, irregular solutions for the Hamiltonian are allowed. We address the scattering problem obtaining the phase shift, S-matrix and the scattering amplitude. The scattering amplitude obtained shows a dependency with energy which stems from the fact that the helicity is not conserved in this system. Examining the poles of the S-matrix we obtain an expression for the bound states. The presence of bound states for this system has not been discussed before in the literature.
We study the model of Einstein-Maxwell theory minimally coupling to a massive charged self-interacting scalar field, parameterized by the quartic and hexic coupling, labelled by $lambda$ and $beta$, respectively. In the absence of scalar field, there is a class of counterexamples to cosmic censorship. Moveover, we investigate the properties of full nonlinear solution with nonzero scalar field, and argue that, by assuming massive charged self-interacting scalar field with sufficiently large charge above one certain bound, these counterexamples can be removed. In particular, this bound on charge for self-interacting scalar field is no longer equal to the weak gravity bound for free scalar case. In the quartic case, the bounds are below free scalar case for $lambda<0$, while above free scalar case for $lambda>0$. Meanwhile, in the hexic case, the bounds are above free scalar case for both $beta>0$ and $beta<0$.
In this work we study the Dirac equation with vector and scalar potentials in the spacetime generated by a cosmic string. Using an approximation for the centrifugal term, a solution for the radial differential equation is obtained. We consider the scattering states under the Hulth{e}n potential and obtain the phase shifts. From the poles of the scattering $S$-matrix the states energies are determined as well.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا