No Arabic abstract
Two approximations used by Sengupta [Phys. Rev. B {bf 100}, 075429 (2019)] in numerically computing the adsorption rate of cold hydrogen atoms on suspended graphene are critically examined. The independent boson model approximation (IBMA) was used to compute the atom self-energy, and the single-pole approximation (SPA) was used to obtain the adsorption rate from the self-energy. It is shown explicitly that there are additional contributions to the self-energy appearing at the same order of the atom-phonon coupling as the IBMA terms that alter the value of the real part of the self-energy at low energies by several orders of magnitude in the regime of interest. This shift in the self-energy consequently renders the use of SPA invalid.
We make use of micro-magneto Raman scattering spectroscopy to probe magneto-phonon resonances (MPR) in suspended mono- to penta-layer graphene. MPR correspond to avoided crossings between zone-center optical phonons (G-mode) and optically-active inter Landau level (LL) transitions and provide a tool to perform LL spectroscopy at a fixed energy ($approx 197~rm{meV}$) set by the G-mode phonon. Using a single-particle effective bilayer model, we readily extract the velocity parameter associated with each MPR. A single velocity parameter slightly above the bulk graphite value suffices to fit all MPR for $Ngeq2$ layer systems. In contrast, in monolayer graphene, we find that the velocity parameter increases significantly from $(1.23pm 0.01) times 10^6~mathrm{m.s^{-1}}$ up to $(1.45pm0.02) times 10^6~mathrm{m.s^{-1}}$ as the first to third optically-active inter LL transition couple to the G-mode phonon. This result is understood as a signature of enhanced many-body effects in unscreened graphene.
We present magneto-Raman spectroscopy measurements on suspended graphene to investigate the charge carrier density-dependent electron-electron interaction in the presence of Landau levels. Utilizing gate-tunable magneto-phonon resonances, we extract the charge carrier density dependence of the Landau level transition energies and the associated effective Fermi velocity $v_mathrm{F}$. In contrast to the logarithmic divergence of $v_mathrm{F}$ at zero magnetic field, we find a piecewise linear scaling of $v_mathrm{F}$ as a function of charge carrier density, due to a magnetic field-induced suppression of the long-range Coulomb interaction. We quantitatively confirm our experimental findings by performing tight-binding calculations on the level of the Hartree-Fock approximation, which also allow us to estimate an excitonic binding energy of $approx$ 6 meV contained in the experimentally extracted Landau level transitions energies.
We investigate the many-body properties of graphene on top of a piezoelectric substrate, focusing on the interaction between the graphene electrons and the piezoelectric acoustic phonons. We calculate the electron and phonon self-energies as well as the electron mobility limited by the substrate phonons. We emphasize the importance of the proper screening of the electron-phonon vertex and discuss the various limiting behaviors as a function of electron energy, temperature, and doping level. The effect on the graphene electrons of the piezoelectric acoustic phonons is compared with that of the intrinsic deformation acoustic phonons of graphene. Substrate phonons tend to dominate over intrinsic ones for low doping levels at high and low temperatures.
The broadband and ultrafast photoresponse of graphene has been extensively studied in recent years, although the photoexcited carrier dynamics is still far from being completely understood. Different experimental approaches imply either one of two fundamentally different scattering mechanisms for hot electrons. One is high-energy optical phonons, while the other is disorder-driven supercollisions with acoustic phonons. However, the concurrent relaxation via both optical and acoustic phonons has not been considered so far, hindering the interpretation of different experiments within a unified framework. Here we expand the optical phonon-mediated cooling model, to include electron scattering with the acoustic phonons. By assuming the enhancement of electron-acoustic phonon supercollisions from the localized defect at the photothermoelectric current-generating interface, we provide a broader perspective to the ultrafast photoresponse of graphene, highlighting the previously overlooked effect of the interface for cooling dynamics. We show that the transient photothermoelectric response, which has been attributed exclusively to supercollisions, can be successfully explained without rejecting the established optical phonon relaxation pathway, demonstrating that the two cooling mechanisms are not mutually exclusive but complement each other.
The low-energy (intraband) range of the third harmonic generation of graphene in the terahertz regime is governed by the damping terms induced by the interactions. A controlled many-body description of the scattering processes is thus a compelling and desirable requirement. In this paper, using a Kadanoff-Baym approach, we systematically investigate the impact of many-body interaction on the third-harmonic generation (THG) of graphene, taking elastic impurity scattering as a benchmark example. We predict the onset in the mixed inter-intraband regime of novel incoherent features driven by the interaction at four- and five-photon transition frequencies in the third-harmonic optical conductivity with a spectral weight proportional to the scattering rate.We show also that, in spite of the complex many-body physics, the purely intraband term governing the limit $omega to 0$ resembles the constraints of the phenomenological model. We ascribe this agreement to the fulfilling of the conservation laws enforced by the conserving approach. The overlap with novel incoherent features and the impact of many-body driven multi-photon vertex couplings limit however severely the validity of phenomenological description.