Do you want to publish a course? Click here

The Control Unit of the KM3NeT Data Acquisition System

116   0   0.0 ( 0 )
 Added by Cristiano Bozza
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The KM3NeT Collaboration runs a multi-site neutrino observatory in the Mediterranean Sea. Water Cherenkov particle detectors, deep in the sea and far off the coasts of France and Italy, are already taking data while incremental construction progresses. Data Acquisition Control software is operating off-shore detectors as well as testing and qualification stations for their components. The software, named Control Unit, is highly modular. It can undergo upgrades and reconfiguration with the acquisition running. Interplay with the central database of the Collaboration is obtained in a way that allows for data taking even if Internet links fail. In order to simplify the management of computing resources in the long term, and to cope with possible hardware failures of one or more computers, the KM3NeT Control Unit software features a custom dynamic resource provisioning and failover technology, which is especially important for ensuring continuity in case of rare transient events in multi-messenger astronomy. The software architecture relies on ubiquitous tools and broadly adopted technologies and has been successfully tested on several operating systems.



rate research

Read More

A test-bench has been set up at the INFN Sezione di Bologna to optimise key elements of the KM3NeT data acquisition system. A complete framework has been built to simulate a full detection unit and test the optical network, time synchronisation, and on-shore computing resources. A fundamental tool in the test-setup is a customized electronic board: the OctoPAES. Based on an Altera MAX10 CPLD, it is designed to emulate in a realistic way the optical and acoustic signals recorded by the underwater detectors. They allow to test in extreme conditions the acquisition system and validate its performance with realistic data. If properly configured, the optical data provided by the OctoPAES can be combined to emulate the signals of a through-going muon or other calibration events. In this contribution the OctoPAES boards and some of their use cases at the test-bench are presented.
A prototype detection unit of the KM3NeT deep-sea neutrino telescope has been installed at 3500m depth 80km offshore the Italian coast. KM3NeT in its final configuration will contain several hundreds of detection units. Each detection unit is a mechanical structure anchored to the sea floor, held vertical by a submerged buoy and supporting optical modules for the detection of Cherenkov light emitted by charged secondary particles emerging from neutrino interactions. This prototype string implements three optical modules with 31 photomultiplier tubes each. These optical modules were developed by the KM3NeT Collaboration to enhance the detection capability of neutrino interactions. The prototype detection unit was operated since its deployment in May 2014 until its decommissioning in July 2015. Reconstruction of the particle trajectories from the data requires a nanosecond accuracy in the time calibration. A procedure for relative time calibration of the photomultiplier tubes contained in each optical module is described. This procedure is based on the measured coincidences produced in the sea by the 40K background light and can easily be expanded to a detector with several thousands of optical modules. The time offsets between the different optical modules are obtained using LED nanobeacons mounted inside them. A set of data corresponding to 600 hours of livetime was analysed. The results show good agreement with Monte Carlo simulations of the expected optical background and the signal from atmospheric muons. An almost background-free sample of muons was selected by filtering the time correlated signals on all the three optical modules. The zenith angle of the selected muons was reconstructed with a precision of about 3{deg}.
The High Energy Stereoscopic System (H.E.S.S.) is a system of Imaging Atmospheric Cherenkov Telescopes (IACTs) located in the Khomas Highland in Namibia. It measures cosmic gamma rays of very high energies (VHE; >100 GeV) using the Earths atmosphere as a calorimeter. The H.E.S.S. Array entered Phase II in September 2012 with the inauguration of a fifth telescope that is larger and more complex than the other four. This paper will give an overview of the current H.E.S.S. central data acquisition (DAQ) system with particular emphasis on the upgrades made to integrate the fifth telescope into the array. At first, the various requirements for the central DAQ are discussed then the general design principles employed to fulfil these requirements are described. Finally, the performance, stability and reliability of the H.E.S.S. central DAQ are presented. One of the major accomplishments is that less than 0.8% of observation time has been lost due to central DAQ problems since 2009.
The JSNS$^{2}$ (J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source) experiment aims to search for neutrino oscillations over a 24 m short baseline at J-PARC. The JSNS$^{2}$ inner detector is filled with 17 tons of gadolinium(Gd)-loaded liquid scintillator (LS) with an additional 31 tons of unloaded LS in the intermediate $gamma$-catcher and an optically separated outer veto volumes. A total of 120 10-inch photomultiplier tubes observe the scintillating optical photons and each analog waveform is stored with the flash analog-to-digital converters. We present details of the data acquisition, processing, and data quality monitoring system. We also present two different trigger logics which are developed for the beam and self-trigger.
254 - G. W. Na , K. -B. Ahn , H. S. Choi 2011
The Ultra-Fast Flash Observatory (UFFO) Pathfinder is a payload on the Russian Lomonosov satellite, scheduled to be launched in November 2011. The Observatory is designed to detect early UV/Optical photons from Gamma-Ray Bursts (GRBs). There are two telescopes and one main data acquisition system: the UFFO Burst Alert & Trigger Telescope (UBAT), the Slewing Mirror Telescope (SMT), and the UFFO Data Acquisition (UDAQ) system. The UDAQ controls and manages the operation and communication of each telescope, and is also in charge of the interface with the satellite. It will write the data taken by each telescope to the NOR flash memory and sends them to the satellite via the Bus-Interface system (BI). It also receives data from the satellite including the coordinates and time of an external trigger from another payload, and distributes them to two telescopes. These functions are implemented in field programmable gates arrays (FPGA) for low power consumption and fast processing without a microprocessor. The UDAQ architecture, control of the system, and data flow will be presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا