No-core configuration interaction (NCCI) calculations for p-shell nuclei give rise to rotational bands, identified by strong intraband E2 transitions and by rotational patterns for excitation energies, electromagnetic moments, and electromagnetic transitions. However, convergence rates differ significantly for different rotational observables and for different rotational bands. The choice of internucleon interaction may also substantially impact the convergence rates. Consequently, there is a substantial gap between simply observing the qualitative emergence of rotation in ab initio calculations and actually carrying out detailed quantitative comparisons. In this contribution, we illustrate the convergence properties of rotational band energy parameters extracted from NCCI calculations, and compare these predictions with experiment, for the isotopes 7-11Be, and for the JISP16 and Daejeon16 interactions.