The Huckel Hamiltonian is an incredibly simple tight-binding model famed for its ability to capture qualitative physics phenomena arising from electron interactions in molecules and materials. Part of its simplicity arises from using only two types of empirically fit physics-motivated parameters: the first describes the orbital energies on each atom and the second describes electronic interactions and bonding between atoms. By replacing these traditionally static parameters with dynamically predicted values, we vastly increase the accuracy of the extended Huckel model. The dynamic values are generated with a deep neural network, which is trained to reproduce orbital energies and densities derived from density functional theory. The resulting model retains interpretability while the deep neural network parameterization is smooth, accurate, and reproduces insightful features of the original static parameterization. Finally, we demonstrate that the Huckel model, and not the deep neural network, is responsible for capturing intricate orbital interactions in two molecular case studies. Overall, this work shows the promise of utilizing machine learning to formulate simple, accurate, and dynamically parameterized physics models.