Do you want to publish a course? Click here

Matrix Completion Using Alternating Minimization for Distribution System State Estimation

80   0   0.0 ( 0 )
 Added by Yajing Liu
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

This paper examines the problem of state estimation in power distribution systems under low-observability conditions. The recently proposed constrained matrix completion method which combines the standard matrix completion method and power flow constraints has been shown to be effective in estimating voltage phasors under low-observability conditions using single-snapshot information. However, the method requires solving a semidefinite programming (SDP) problem, which becomes computationally infeasible for large systems and if multiple-snapshot (time-series) information is used. This paper proposes an efficient algorithm to solve the constrained matrix completion problem with time-series data. This algorithm is based on reformulating the matrix completion problem as a bilinear (non-convex) optimization problem, and applying the alternating minimization algorithm to solve this problem. This paper proves the summable convergence of the proposed algorithm, and demonstrates its efficacy and scalability via IEEE 123-bus system and a real utility feeder system. This paper also explores the value of adding more data from the history in terms of computation time and estimation accuracy.



rate research

Read More

Due to the insufficient measurements in the distribution system state estimation (DSSE), full observability and redundant measurements are difficult to achieve without using the pseudo measurements. The matrix completion state estimation (MCSE) combines the matrix completion and power system model to estimate voltage by exploring the low-rank characteristics of the matrix. This paper proposes a robust matrix completion state estimation (RMCSE) to estimate the voltage in a distribution system under a low-observability condition. Tradition state estimation weighted least squares (WLS) method requires full observability to calculate the states and needs redundant measurements to proceed a bad data detection. The proposed method improves the robustness of the MCSE to bad data by minimizing the rank of the matrix and measurements residual with different weights. It can estimate the system state in a low-observability system and has robust estimates without the bad data detection process in the face of multiple bad data. The method is numerically evaluated on the IEEE 33-node radial distribution system. The estimation performance and robustness of RMCSE are compared with the WLS with the largest normalized residual bad data identification (WLS-LNR), and the MCSE.
With the rising penetration of distributed energy resources, distribution system control and enabling techniques such as state estimation have become essential to distribution system operation. However, traditional state estimation techniques have difficulty coping with the low-observability conditions often present on the distribution system due to the paucity of sensors and heterogeneity of measurements. To address these limitations, we propose a distribution system state estimation algorithm that employs matrix completion (a tool for estimating missing values in low-rank matrices) augmented with noise-resilient power flow constraints. This method operates under low-observability conditions where standard least-squares-based methods cannot operate, and flexibly incorporates any network quantities measured in the field. We empirically evaluate our method on the IEEE 33- and 123-bus test systems, and find that it provides near-perfect state estimation performance (within 1% mean absolute percent error) across many low-observability data availability regimes.
133 - Yu Guan , Shuyu Dong , P.-A. Absil 2020
We consider a low-rank tensor completion (LRTC) problem which aims to recover a tensor from incomplete observations. LRTC plays an important role in many applications such as signal processing, computer vision, machine learning, and neuroscience. A widely used approach is to combine the tensor completion data fitting term with a regularizer based on a convex relaxation of the multilinear ranks of the tensor. For the data fitting function, we model the tensor variable by using the Canonical Polyadic (CP) decomposition and for the low-rank promoting regularization function, we consider a graph Laplacian-based function which exploits correlations between the rows of the matrix unfoldings. For solving our LRTC model, we propose an efficient alternating minimization algorithm. Furthermore, based on the Kurdyka-{L}ojasiewicz property, we show that the sequence generated by the proposed algorithm globally converges to a critical point of the objective function. Besides, an alternating direction method of multipliers algorithm is also developed for the LRTC model. Extensive numerical experiments on synthetic and real data indicate that the proposed algorithms are effective and efficient.
In this paper, we consider a class of nonsmooth nonconvex optimization problems whose objective is the sum of a block relative smooth function and a proper and lower semicontinuous block separable function. Although the analysis of block proximal gradient (BPG) methods for the class of block $L$-smooth functions have been successfully extended to Bregman BPG methods that deal with the class of block relative smooth functions, accelerated Bregman BPG methods are scarce and challenging to design. Taking our inspiration from Nesterov-type acceleration and the majorization-minimization scheme, we propose a block alternating Bregman Majorization-Minimization framework with Extrapolation (BMME). We prove subsequential convergence of BMME to a first-order stationary point under mild assumptions, and study its global convergence under stronger conditions. We illustrate the effectiveness of BMME on the penalized orthogonal nonnegative matrix factorization problem.
We develop computational methods for approximating the solution of a linear multi-term matrix equation in low rank. We follow an alternating minimization framework, where the solution is represented as a product of two matrices, and approximations to each matrix are sought by solving certain minimization problems repeatedly. The solution methods we present are based on a rank-adaptive variant of alternating energy minimization methods that builds an approximation iteratively by successively computing a rank-one solution component at each step. We also develop efficient procedures to improve the accuracy of the low-rank approximate solutions computed using these successive rank-one update techniques. We explore the use of the methods with linear multi-term matrix equations that arise from stochastic Galerkin finite element discretizations of parameterized linear elliptic PDEs, and demonstrate their effectiveness with numerical studies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا