Do you want to publish a course? Click here

Learning to Seek: Autonomous Source Seeking with Deep Reinforcement Learning Onboard a Nano Drone Microcontroller

152   0   0.0 ( 0 )
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We present fully autonomous source seeking onboard a highly constrained nano quadcopter, by contributing application-specific system and observation feature design to enable inference of a deep-RL policy onboard a nano quadcopter. Our deep-RL algorithm finds a high-performance solution to a challenging problem, even in presence of high noise levels and generalizes across real and simulation environments with different obstacle configurations. We verify our approach with simulation and in-field testing on a Bitcraze CrazyFlie using only the cheap and ubiquitous Cortex-M4 microcontroller unit. The results show that by end-to-end application-specific system design, our contribution consumes almost three times less additional power, as compared to competing learning-based navigation approach onboard a nano quadcopter. Thanks to our observation space, which we carefully design within the resource constraints, our solution achieves a 94% success rate in cluttered and randomized test environments, as compared to the previously achieved 80%. We also compare our strategy to a simple finite state machine (FSM), geared towards efficient exploration, and demonstrate that our policy is more robust and resilient at obstacle avoidance as well as up to 70% more efficient in source seeking. To this end, we contribute a cheap and lightweight end-to-end tiny robot learning (tinyRL) solution, running onboard a nano quadcopter, that proves to be robust and efficient in a challenging task using limited sensory input.



rate research

Read More

93 - Zheng Wu , Liting Sun , Wei Zhan 2020
In the past decades, we have witnessed significant progress in the domain of autonomous driving. Advanced techniques based on optimization and reinforcement learning (RL) become increasingly powerful at solving the forward problem: given designed reward/cost functions, how should we optimize them and obtain driving policies that interact with the environment safely and efficiently. Such progress has raised another equally important question: emph{what should we optimize}? Instead of manually specifying the reward functions, it is desired that we can extract what human drivers try to optimize from real traffic data and assign that to autonomous vehicles to enable more naturalistic and transparent interaction between humans and intelligent agents. To address this issue, we present an efficient sampling-based maximum-entropy inverse reinforcement learning (IRL) algorithm in this paper. Different from existing IRL algorithms, by introducing an efficient continuous-domain trajectory sampler, the proposed algorithm can directly learn the reward functions in the continuous domain while considering the uncertainties in demonstrated trajectories from human drivers. We evaluate the proposed algorithm on real driving data, including both non-interactive and interactive scenarios. The experimental results show that the proposed algorithm achieves more accurate prediction performance with faster convergence speed and better generalization compared to other baseline IRL algorithms.
Autonomous car racing is a challenging task in the robotic control area. Traditional modular methods require accurate mapping, localization and planning, which makes them computationally inefficient and sensitive to environmental changes. Recently, deep-learning-based end-to-end systems have shown promising results for autonomous driving/racing. However, they are commonly implemented by supervised imitation learning (IL), which suffers from the distribution mismatch problem, or by reinforcement learning (RL), which requires a huge amount of risky interaction data. In this work, we present a general deep imitative reinforcement learning approach (DIRL), which successfully achieves agile autonomous racing using visual inputs. The driving knowledge is acquired from both IL and model-based RL, where the agent can learn from human teachers as well as perform self-improvement by safely interacting with an offline world model. We validate our algorithm both in a high-fidelity driving simulation and on a real-world 1/20-scale RC-car with limited onboard computation. The evaluation results demonstrate that our method outperforms previous IL and RL methods in terms of sample efficiency and task performance. Demonstration videos are available at https://caipeide.github.io/autorace-dirl/
How to explore corner cases as efficiently and thoroughly as possible has long been one of the top concerns in the context of deep reinforcement learning (DeepRL) autonomous driving. Training with simulated data is less costly and dangerous than utilizing real-world data, but the inconsistency of parameter distribution and the incorrect system modeling in simulators always lead to an inevitable Sim2real gap, which probably accounts for the underperformance in novel, anomalous and risky cases that simulators can hardly generate. Domain Randomization(DR) is a methodology that can bridge this gap with little or no real-world data. Consequently, in this research, an adversarial model is put forward to robustify DeepRL-based autonomous vehicles trained in simulation to gradually surfacing harder events, so that the models could readily transfer to the real world.
While Deep Reinforcement Learning (DRL) provides transformational capabilities to the control of Robotics and Autonomous Systems (RAS), the black-box nature of DRL and uncertain deployment-environments of RAS pose new challenges on its dependability. Although there are many existing works imposing constraints on the DRL policy to ensure a successful completion of the mission, it is far from adequate in terms of assessing the DRL-driven RAS in a holistic way considering all dependability properties. In this paper, we formally define a set of dependability properties in temporal logic and construct a Discrete-Time Markov Chain (DTMC) to model the dynamics of risk/failures of a DRL-driven RAS interacting with the stochastic environment. We then do Probabilistic Model Checking based on the designed DTMC to verify those properties. Our experimental results show that the proposed method is effective as a holistic assessment framework, while uncovers conflicts between the properties that may need trade-offs in the training. Moreover, we find the standard DRL training cannot improve dependability properties, thus requiring bespoke optimisation objectives concerning them. Finally, our method offers a novel dependability analysis to the Sim-to-Real challenge of DRL.
This paper studies the problem of autonomous exploration under localization uncertainty for a mobile robot with 3D range sensing. We present a framework for self-learning a high-performance exploration policy in a single simulation environment, and transferring it to other environments, which may be physical or virtual. Recent work in transfer learning achieves encouraging performance by domain adaptation and domain randomization to expose an agent to scenarios that fill the inherent gaps in sim2sim and sim2real approaches. However, it is inefficient to train an agent in environments with randomized conditions to learn the important features of its current state. An agent can use domain knowledge provided by human experts to learn efficiently. We propose a novel approach that uses graph neural networks in conjunction with deep reinforcement learning, enabling decision-making over graphs containing relevant exploration information provided by human experts to predict a robots optimal sensing action in belief space. The policy, which is trained only in a single simulation environment, offers a real-time, scalable, and transferable decision-making strategy, resulting in zero-shot transfer to other simulation environments and even real-world environments.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا