Driven by an increasing need for model interpretability, interpretable models have become strong competitors for black-box models in many real applications. In this paper, we propose a novel type of model where interpretable models compete and collaborate with black-box models. We present the Model-Agnostic Linear Competitors (MALC) for partially interpretable classification. MALC is a hybrid model that uses linear models to locally substitute any black-box model, capturing subspaces that are most likely to be in a class while leaving the rest of the data to the black-box. MALC brings together the interpretable power of linear models and good predictive performance of a black-box model. We formulate the training of a MALC model as a convex optimization. The predictive accuracy and transparency (defined as the percentage of data captured by the linear models) balance through a carefully designed objective function and the optimization problem is solved with the accelerated proximal gradient method. Experiments show that MALC can effectively trade prediction accuracy for transparency and provide an efficient frontier that spans the entire spectrum of transparency.