Do you want to publish a course? Click here

Improving the Thermal Stability of a CCD Through Clocking

57   0   0.0 ( 0 )
 Added by Joe P. Ninan
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Modern precise radial velocity spectrometers are designed to infer the existence of planets orbiting other stars by measuring few-nm shifts in the positions of stellar spectral lines recorded at high spectral resolution on a large-area digital detector. While the spectrometer may be highly stabilized in terms of temperature, the detector itself may undergo changes in temperature during readout that are an order of magnitude or more larger than the other opto-mechanical components within the instrument. These variations in detector temperature can translate directly into systematic measurement errors. We explore a technique for reducing the amplitude of CCD temperature variations by shuffling charge within a pixel in the parallel direction during integration. We find that this dither clocking mode greatly reduces temperature variations in the CCDs being tested for the NEID spectrometer. We investigate several potential negative effects this clocking scheme could have on the underlying spectral data.

rate research

Read More

At the highest levels of pulsar timing precision achieved to date, experiments are limited by noise intrinsic to the pulsar. This stochastic wideband impulse modulated self-noise (SWIMS) limits pulsar timing precision by randomly biasing the measured times of arrival and thus increasing the root mean square (rms) timing residual. We discuss an improved methodology of removing this bias in the measured times of arrival by including information about polarized radiation. Observations of J0437-4715 made over a one-week interval at the Parkes Observatory are used to demonstrate a nearly 40 per cent improvement in the rms timing residual with this extended analysis. In this way, based on the observations over a 64 MHz bandwidth centred at 1341 MHz with integrations over 16.78 s we achieve a 476 ns rms timing residual. In the absence of systematic error, these results lead to a predicted rms timing residual of 30 ns in one hour integrations; however the data are currently limited by variable Faraday rotation in the Earths ionosphere. The improvement demonstrated in this work provides an opportunity to increase the sensitivity in various pulsar timing experiments, for example pulsar timing arrays that pursue the detection of the stochastic background of gravitational waves. The fractional improvement is highly dependent on the properties of the pulse profile and the stochastic wideband impulse modulated self-noise of the pulsar in question.
The X-ray telescope on board the Swift satellite for gamma-ray burst astronomy has been exposed to the radiation of the space environment since launch in November 2004. Radiation causes damage to the detector, with the generation of dark current and charge trapping sites that result in the degradation of the spectral resolution and an increase of the instrumental background. The Swift team has a dedicated calibration program with the goal of recovering a significant proportion of the lost spectroscopic performance. Calibration observations of supernova remnants with strong emission lines are analysed to map the detector charge traps and to derive position-dependent corrections to the measured photon energies. We have achieved a substantial recovery in the XRT resolution by implementing these corrections in an updated version of the Swift XRT gain file and in corresponding improvements to the Swift XRT HEAsoft software. We provide illustrations of the impact of the enhanced energy resolution, and show that we have recovered most of the spectral resolution lost since launch.
We report the radiation hardness of a p-channel CCD developed for the X-ray CCD camera onboard the XRISM satellite. This CCD has basically the same characteristics as the one used in the previous Hitomi satellite, but newly employs a notch structure of potential for signal charges by increasing the implant concentration in the channel. The new device was exposed up to approximately $7.9 times 10^{10} mathrm{~protons~cm^{-2}}$ at 100 MeV. The charge transfer inefficiency was estimated as a function of proton fluence with an ${}^{55} mathrm{Fe}$ source. A device without the notch structure was also examined for comparison. The result shows that the notch device has a significantly higher radiation hardness than those without the notch structure including the device adopted for Hitomi. This proves that the new CCD is radiation tolerant for space applications with a sufficient margin.
We propose and study a model of a quantum memory that features self-correcting properties and a lifetime growing arbitrarily with system size at non-zero temperature. This is achieved by locally coupling a 2D L x L toric code to a 3D bath of bosons hopping on a cubic lattice. When the stabilizer operators of the toric code are coupled to the displacement operator of the bosons, we solve the model exactly via a polaron transformation and show that the energy penalty to create anyons grows linearly with L. When the stabilizer operators of the toric code are coupled to the bosonic density operator, we use perturbation theory to show that the energy penalty for anyons scales with ln(L). For a given error model, these energy penalties lead to a lifetime of the stored quantum information growing respectively exponentially and polynomially with L. Furthermore, we show how to choose an appropriate coupling scheme in order to hinder the hopping of anyons (and not only their creation) with energy barriers that are of the same order as the anyon creation gaps. We argue that a toric code coupled to a 3D Heisenberg ferromagnet realizes our model in its low-energy sector. Finally, we discuss the delicate issue of the stability of topological order in the presence of perturbations. While we do not derive a rigorous proof of topological order, we present heuristic arguments suggesting that topological order remains intact when perturbative operators acting on the toric code spins are coupled to the bosonic environment.
The Photon Transfer Curve (PTC) of a CCD depicts the variance of uniform images as a function of their average. It is now well established that the variance is not proportional to the average, as Poisson statistics would indicate, but rather flattens out at high flux. This variance deficit, related to the brighter-fatter effect, feeds correlations between nearby pixels, that increase with flux, and decay with distance. We propose an analytical expression for the PTC shape, and for the dependence of correlations with intensity, and relate both to some more basic quantities related to the electrostatics of the sensor, that are commonly used to correct science images for the brighter-fatter effect. We derive electrostatic constraints from a large set of flat field images acquired with a CCD e2v 250, and eventually question the generally-admitted assumption that boundaries of CCD pixels shift by amounts proportional to the source charges. Our results show that the departure of flat field statistics from Poisson law is entirely compatible with charge redistribution during the drift in the sensor.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا