No Arabic abstract
In this work we study the structure and cardinality of maximal sets of commuting and anticommuting Paulis in the setting of the abelian Pauli group. We provide necessary and sufficient conditions for anticommuting sets to be maximal, and present an efficient algorithm for generating anticommuting sets of maximum size. As a theoretical tool, we introduce commutativity maps, and study properties of maps associated with elements in the cosets with respect to anticommuting minimal generating sets. We also derive expressions for the number of distinct sets of commuting and anticommuting abelian Paulis of a given size.
There exists a large class of groups of operators acting on Hilbert spaces, where commutativity of group elements can be expressed in the geometric language of symplectic polar spaces embedded in the projective spaces PG($n, p$), $n$ being odd and $p$ a prime. Here, we present a result about commuting and non-commuting group elements based on the existence of so-called Moebius pairs of $n$-simplices, i. e., pairs of $n$-simplices which are emph{mutually inscribed and circumscribed} to each other. For group elements representing an $n$-simplex there is no element outside the centre which commutes with all of them. This allows to express the dimension $n$ of the associated polar space in group theoretic terms. Any Moebius pair of $n$-simplices according to our construction corresponds to two disjoint families of group elements (operators) with the following properties: (i) Any two distinct elements of the same family do not commute. (ii) Each element of one family commutes with all but one of the elements from the other family. A three-qubit generalised Pauli group serves as a non-trivial example to illustrate the theory for $p=2$ and $n=5$.
Linear system games are a generalization of Mermins magic square game introduced by Cleve and Mittal. They show that perfect strategies for linear system games in the tensor-product model of entanglement correspond to finite-dimensional operator solutions of a certain set of non-commutative equations. We investigate linear system games in the commuting-operator model of entanglement, where Alice and Bobs measurement operators act on a joint Hilbert space, and Alices operators must commute with Bobs operators. We show that perfect strategies in this model correspond to possibly-infinite-dimensional operator solutions of the non-commutative equations. The proof is based around a finitely-presented group associated to the linear system which arises from the non-commutative equations.
We discuss the analogy between topological entanglement and quantum entanglement, particularly for tripartite quantum systems. We illustrate our approach by first discussing two clearly (topologically) inequivalent systems of three-ring links: The Borromean rings, in which the removal of any one link leaves the remaining two non-linked (or, by analogy, non-entangled); and an inequivalent system (which we call the NUS link) for which the removal of any one link leaves the remaining two linked (or, entangled in our analogy). We introduce unitary representations for the appropriate Braid Group ($B_3$) which produce the related quantum entangled systems. We finally remark that these two quantum systems, which clearly possess inequivalent entanglement properties, are locally unitarily equivalent.
Given a uniform, frustration-free family of local Lindbladians defined on a quantum lattice spin system in any spatial dimension, we prove a strong exponential convergence in relative entropy of the system to equilibrium under a condition of spatial mixing of the stationary Gibbs states and the rapid decay of the relative entropy on finite-size blocks. Our result leads to the first examples of the positivity of the modified logarithmic Sobolev inequality for quantum lattice spin systems independently of the system size. Moreover, we show that our notion of spatial mixing is a consequence of the recent quantum generalization of Dobrushin and Shlosmans complete analyticity of the free-energy at equilibrium. The latter typically holds above a critical temperature Tc. Our results have wide-ranging applications in quantum information. As an illustration, we discuss four of them: first, using techniques of quantum optimal transport, we show that a quantum annealer subject to a finite range classical noise will output an energy close to that of the fixed point after constant annealing time. Second, we prove Gaussian concentration inequalities for Lipschitz observables and show that the eigenstate thermalization hypothesis holds for certain high-temperture Gibbs states. Third, we prove a finite blocklength refinement of the quantum Stein lemma for the task of asymmetric discrimination of two Gibbs states of commuting Hamiltonians satisfying our conditions. Fourth, in the same setting, our results imply the existence of a local quantum circuit of logarithmic depth to prepare Gibbs states of a class of commuting Hamiltonians.
Important developments in fault-tolerant quantum computation using the braiding of anyons have placed the theory of braid groups at the very foundation of topological quantum computing. Furthermore, the realization by Kauffman and Lomonaco that a specific braiding operator from the solution of the Yang-Baxter equation, namely the Bell matrix, is universal implies that in principle all quantum gates can be constructed from braiding operators together with single qubit gates. In this paper we present a new class of braiding operators from the Temperley-Lieb algebra that generalizes the Bell matrix to multi-qubit systems, thus unifying the Hadamard and Bell matrices within the same framework. Unlike previous braiding operators, these new operators generate {it directly}, from separable basis states, important entangled states such as the generalized Greenberger-Horne-Zeilinger states, cluster-like states, and other states with varying degrees of entanglement.