We discuss the rest-frame optical emission line spectra of a large (~50) sample of z=3.1 Lyman alpha emitters (LAEs) whose physical properties suggest such sources are promising analogs of galaxies in the reionization era. Reliable Lyman continuum escape fractions have now been determined for a large sample of such LAEs from the Lyman Continuum Escape Survey (LACES) undertaken via deep HST imaging in the SSA22 survey area reported in Fletcher et al. (2019). Using new measures of [OII] emission secured from Keck MOSFIRE spectra we re-examine, for a larger sample, earlier claims that Lyman continuum leakages may correlate with the nebular emission line ratio [OIII]/[OII] as expected for density-bound HII regions. We find that a large [OIII]/[OII] line ratio is indeed a necessary condition for Lyman continuum leakage, strengthening earlier claims made using smaller samples at various redshifts. However, not all LAEs with large [OIII]/[OII] line ratios are leakers and leaking radiation appears not to be associated with differences in other spectral diagnostics. This suggests the detection of leaking radiation is modulated by an additional property, possibly the viewing angle for porous HII regions. We discuss our new results in the context of the striking bimodality of LAE leakers and non-leakers found in the LACES program and the implications for the sources of cosmic reionization.