Do you want to publish a course? Click here

MRI Brain Tumor Segmentation using Random Forests and Fully Convolutional Networks

134   0   0.0 ( 0 )
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In this paper, we propose a novel learning based method for automated segmentation of brain tumor in multimodal MRI images, which incorporates two sets of machine -learned and hand crafted features. Fully convolutional networks (FCN) forms the machine learned features and texton based features are considered as hand-crafted features. Random forest (RF) is used to classify the MRI image voxels into normal brain tissues and different parts of tumors, i.e. edema, necrosis and enhancing tumor. The method was evaluated on BRATS 2017 challenge dataset. The results show that the proposed method provides promising segmentations. The mean Dice overlap measure for automatic brain tumor segmentation against ground truth is 0.86, 0.78 and 0.66 for whole tumor, core and enhancing tumor, respectively.



rate research

Read More

In this paper, we propose a novel learning based method for automated segmenta-tion of brain tumor in multimodal MRI images. The machine learned features from fully convolutional neural network (FCN) and hand-designed texton fea-tures are used to classify the MRI image voxels. The score map with pixel-wise predictions is used as a feature map which is learned from multimodal MRI train-ing dataset using the FCN. The learned features are then applied to random for-ests to classify each MRI image voxel into normal brain tissues and different parts of tumor. The method was evaluated on BRATS 2013 challenge dataset. The results show that the application of the random forest classifier to multimodal MRI images using machine-learned features based on FCN and hand-designed features based on textons provides promising segmentations. The Dice overlap measure for automatic brain tumor segmentation against ground truth is 0.88, 080 and 0.73 for complete tumor, core and enhancing tumor, respectively.
Automatic segmentation of the liver and hepatic lesions is an important step towards deriving quantitative biomarkers for accurate clinical diagnosis and computer-aided decision support systems. This paper presents a method to automatically segment liver and lesions in CT and MRI abdomen images using cascaded fully convolutional neural networks (CFCNs) enabling the segmentation of a large-scale medical trial or quantitative image analysis. We train and cascade two FCNs for a combined segmentation of the liver and its lesions. In the first step, we train a FCN to segment the liver as ROI input for a second FCN. The second FCN solely segments lesions within the predicted liver ROIs of step 1. CFCN models were trained on an abdominal CT dataset comprising 100 hepatic tumor volumes. Validations on further datasets show that CFCN-based semantic liver and lesion segmentation achieves Dice scores over 94% for liver with computation times below 100s per volume. We further experimentally demonstrate the robustness of the proposed method on an 38 MRI liver tumor volumes and the public 3DIRCAD dataset.
Multiple Sclerosis (MS) is an autoimmune disease that leads to lesions in the central nervous system. Magnetic resonance (MR) images provide sufficient imaging contrast to visualize and detect lesions, particularly those in the white matter. Quantitative measures based on various features of lesions have been shown to be useful in clinical trials for evaluating therapies. Therefore robust and accurate segmentation of white matter lesions from MR images can provide important information about the disease status and progression. In this paper, we propose a fully convolutional neural network (CNN) based method to segment white matter lesions from multi-contrast MR images. The proposed CNN based method contains two convolutional pathways. The first pathway consists of multiple parallel convolutional filter banks catering to multiple MR modalities. In the second pathway, the outputs of the first one are concatenated and another set of convolutional filters are applied. The output of this last pathway produces a membership function for lesions that may be thresholded to obtain a binary segmentation. The proposed method is evaluated on a dataset of 100 MS patients, as well as the ISBI 2015 challenge data consisting of 14 patients. The comparison is performed against four publicly available MS lesion segmentation methods. Significant improvement in segmentation quality over the competing methods is demonstrated on various metrics, such as Dice and false positive ratio. While evaluating on the ISBI 2015 challenge data, our method produces a score of 90.48, where a score of 90 is considered to be comparable to a human rater.
As a basic task in computer vision, semantic segmentation can provide fundamental information for object detection and instance segmentation to help the artificial intelligence better understand real world. Since the proposal of fully convolutional neural network (FCNN), it has been widely used in semantic segmentation because of its high accuracy of pixel-wise classification as well as high precision of localization. In this paper, we apply several famous FCNN to brain tumor segmentation, making comparisons and adjusting network architectures to achieve better performance measured by metrics such as precision, recall, mean of intersection of union (mIoU) and dice score coefficient (DSC). The adjustments to the classic FCNN include adding more connections between convolutional layers, enlarging decoders after up sample layers and changing the way shallower layers information is reused. Besides the structure modification, we also propose a new classifier with a hierarchical dice loss. Inspired by the containing relationship between classes, the loss function converts multiple classification to multiple binary classification in order to counteract the negative effect caused by imbalance data set. Massive experiments have been done on the training set and testing set in order to assess our refined fully convolutional neural networks and new types of loss function. Competitive figures prove they are more effective than their predecessors.
The most recent fast and accurate image segmentation methods are built upon fully convolutional deep neural networks. In this paper, we propose new deep learning strategies for DenseNets to improve segmenting images with subtle differences in intensity values and features. We aim to segment brain tissue on infant brain MRI at about 6 months of age where white matter and gray matter of the developing brain show similar T1 and T2 relaxation times, thus appear to have similar intensity values on both T1- and T2-weighted MRI scans. Brain tissue segmentation at this age is, therefore, very challenging. To this end, we propose an exclusive multi-label training strategy to segment the mutually exclusive brain tissues with similarity loss functions that automatically balance the training based on class prevalence. Using our proposed training strategy based on similarity loss functions and patch prediction fusion we decrease the number of parameters in the network, reduce the complexity of the training process focusing the attention on less number of tasks, while mitigating the effects of data imbalance between labels and inaccuracies near patch borders. By taking advantage of these strategies we were able to perform fast image segmentation (90 seconds per 3D volume), using a network with less parameters than many state-of-the-art networks, overcoming issues such as 3Dvs2D training and large vs small patch size selection, while achieving the top performance in segmenting brain tissue among all methods tested in first and second round submissions of the isointense infant brain MRI segmentation (iSeg) challenge according to the official challenge test results. Our proposed strategy improves the training process through balanced training and by reducing its complexity while providing a trained model that works for any size input image and is fast and more accurate than many state-of-the-art methods.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا