Do you want to publish a course? Click here

Statistical-model description of $gamma$ decay from compound-nucleus resonances

62   0   0.0 ( 0 )
 Added by Paul Fanto
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The statistical model of compound-nucleus reactions predicts that the fluctuations of the partial $gamma$-decay widths for a compound-nucleus resonance are governed by the Porter-Thomas distribution (PTD), and that consequently the distribution of total $gamma$-decay widths is very narrow. However, a recent experiment [Koehler, Larsen, Guttormsen, Siem, and Guber, Phys. Rev. C 88, 041305(R) (2013)] reported large fluctuations of the total $gamma$-decay widths in the $^{95}$Mo$(n,gamma)^{96}$Mo* reaction, contrary to this expectation. Furthermore, in recent theoretical works it was argued that sufficiently strong channel couplings can cause deviations of the partial width distributions from PTD. Here, we investigate whether the combined influence of a large number of nonequivalent $gamma$-decay channels, each of which couples weakly to the compound-nucleus resonances, can modify the statistics of the partial widths. We study this effect in neutron scattering off $^{95}$Mo within a random-matrix model that includes coupling to the entrance neutron channel and to the large number of $gamma$ channels. Using realistic coupling parameters obtained from empirical models for the level density and the $gamma$ strength function, we find that the PTD describes well the distribution of partial widths for all decay channels, in agreement with the statistical-model expectation. Furthermore, we find that the width of the distribution of the total $gamma$-decay widths is insensitive to wide variations in the parameters of the $gamma$ strength function, as well as to deviations of the partial-width distributions from the PTD. Our results rule out an explanation of the recent experimental data within a statistical-model description of the compound nucleus.



rate research

Read More

62 - W. L. Lv , Y. F. Niu , G. Col`o 2020
The direct $gamma$-decays of the giant dipole resonance (GDR) and the giant quadrupole resonance (GQR) of $^{208}$Pb to low-lying states are investigated by means of a microscopic self-consistent model. The model considers effects beyond the linear response approximation. The strong sensitivity of $gamma$-decay to the isospin of the involved states is proven. By comparing their decay widths, a much larger weight of the $3_{1}^{-}$ component in the GQR wave function of $^{208}$Pb is deduced, with respect to the weight of the $2_{1}^{+}$ component in the GDR wave function. Thus, we have shown that $gamma$-decay is a unique probe of the resonance wave functions, and a testground for nuclear structure models.
112 - B.Schenke , C.Greiner 2003
The various experimental data at AGS, SPS and RHIC energies on hadron particle yields for central heavy ion collisions are investigated by employing a generalized statistical density operator, that allows for a well-defined anisotropic local momentum distribution for each particle species, specified by a common streaming velocity parameter. The individual particle ratios are rather insensitive to a change in this new intensive parameter. This leads to the conclusion that the reproduction of particle ratios by a statistical treatment does not imply the existence of a fully isotropic local momentum distribution at hadrochemical freeze-out, i.e. a state of almost complete thermal equilibrium.
54 - P. Fanto , Y. Alhassid , 2018
Several experiments [1-3] show significant deviations from predictions of the statistical model of nuclear reactions. We summarize unsuccessful recent theoretical efforts to account for such disagreement in terms of a violation of orthogonal invariance caused by the Thomas-Ehrman shift. We report on numerical simulations involving a large number of gamma decay channels that also give rise to violation of orthogonal invariance but likewise do not account for the discrepancies. We discuss the statistical model in the light of these results.
The structure of the neutron-rich carbon nucleus ^{16}C is described by introducing a new microscopic shell model of no-core type. The model space is composed of the 0s, 0p, 1s0d, and 1p0f shells. The effective interaction is microscopically derived from the CD-Bonn potential and the Coulomb force through a unitary transformation theory. Calculated low-lying energy levels of ^{16}C agree well with the experiment. The B(E2;2_{1}^{+} to 0_{1}^{+}) value is calculated with the bare charges. The anomalously hindered B(E2) value for ^{16}C, measured recently, is well reproduced.
144 - Jaakko Manninen 2007
The rapidity densities in Au-Au collisions at center-of-mass energies 200 and 130 A GeV measured at Relativistic Heavy-Ion Collider by STAR and PHENIX collaborations are analyzed within the statistical hadronization model at chemical freeze-out. We find that the model can describe the experimental rapidity densities well. The corresponding chemical freeze-out parameters are determined and they are seen to be in agreement with what we expect from our previous analyzes at lower beam energies at AGS and SPS.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا