Phase Control of Majorana Bound States in a Topological X Junction


Abstract in English

Topological superconductivity supports exotic Majorana bound states (MBS) which are chargeless zero-energy emergent quasiparticles. With their non-Abelian exchange statistics and fractionalization of a single electron stored nonlocally as a spatially separated MBS, they are particularly suitable for implementing fault-tolerant topological quantum computing. While the main efforts to realize MBS have focused on one-dimensional systems, the onset of topological superconductivity requires delicate parameter tuning and geometric constraints pose significant challenges for their control and demonstration of non-Abelian statistics. To overcome these challenges, building on recent experimental advances in planar Josephson junctions (JJs), we propose a MBS platform of X-shaped JJs. This versatile implementation reveals how external flux control of the superconducting phase difference can generate and manipulate multiple MBS pairs to probe non-Abelian statistics. The underlying topological superconductivity exists over a large parameter space, consistent with materials used in our fabrication of such X junctions, as an important step towards scalable topological quantum computing.

Download