Entanglement topological invariants for one-dimensional topological superconductors


Abstract in English

Entanglement is known to serve as an order parameter for true topological order in two-dimensional systems. We show how entanglement of disconnected partitions defines topological invariants for one-dimensional topological superconductors. These order parameters quantitatively capture the entanglement that is possible to distill from the ground state manifold, and are thus quantized to 0 or log 2. Their robust quantization property is inferred from the underlying lattice gauge theory description of topological superconductors, and is corroborated via exact solutions and numerical simulations. Transitions between topologically trivial and non-trivial phases are accompanied by scaling behavior, a hallmark of genuine order parameters, captured by entanglement critical exponents. These order parameters are experimentally measurable utilizing state-of-the-art techniques.

Download