The Vafa-Witten invariants via surface Deligne-Mumford stacks and S-duality


Abstract in English

Motivated by the S-duality conjecture of Vafa-Witten, Tanaka-Thomas have developed a theory of Vafa-Witten invariants for projective surfaces using the moduli space of Higgs sheaves. Their definition and calculation prove the S-duality prediction of Vafa-Witten in many cases in the side of gauge group $SU(r)$. In this survey paper for ICCM-2019 we review the S-duality conjecture in physics by Vafa-Witten and the definition of Vafa-Witten invariants for smooth projective surfaces and surface Deligne-Mumford stacks. We make a prediction that the Vafa-Witten invariants for Deligne-Mumford surfaces may give the generating series for the Langlands dual group $^{L}SU(r)=SU(r)/zz_r$. We survey a check for the projective plane $pp^2$.

Download