No Arabic abstract
Spin-resonance modes (SRM) are taken as evidence for magnetically driven pairing in Fe-based superconductors, but their character remains poorly understood. The broadness, the splitting and the spin-space anisotropies of SRMs contrast with the mostly accepted interpretation as spin excitons. We study hole-doped Ba$_{1-x}$Na$_x$Fe$_2$As$_2$ that displays a spin reorientation transition. This reorientation has little impact on the overall appearance of the resonance excitations with a high-energy isotropic and a low-energy anisotropic mode. However, the strength of the anisotropic low-energy mode sharply peaks at the highest doping that still exhibits magnetic ordering resulting in the strongest SRM observed in any Fe-based superconductor so far. This remarkably strong SRM is accompanied by a loss of about half of the magnetic Bragg intensity upon entering the SC phase. Anisotropic SRMs thus can allow the system to compensate for the loss of exchange energy arising from the reduced antiferromagnetic correlations within the SC state.
We study the interplay of magnetic and superconducting order in single crystalline hole doped Ba1-xNaxFe2As2 using muon spin relaxation. We find microscopic coexistence of magnetic order and superconductivity. In a strongly underdoped specimen the two forms of order coexist without any measurable reduction of the ordered magnetic moment by superconductivity, while in a nearly optimally doped sample the ordered magnetic moment is strongly suppressed below the superconducting transition temperature. This coupling can be well described within the framework of an effective two-band model incorporating inter- and intra-band interactions. In optimally doped Ba1-xNaxFe2As2 we observe no traces of static or dynamic magnetism and the temperature dependence of the superfluid density is consistent with two s-wave gaps without nodes.
To gain insight into the unconventional superconductivity of Fe-pnictides with no electron pockets, we measure the thermal conductivity $kappa$ and penetration depth $lambda$ in the heavily hole-doped regime of Ba$_{1-x}$K$_x$Fe$_2$As$_2$. The residual thermal conductivity $(kappa/T)_{T rightarrow 0,{rm K}}$ and $T$-dependence of $lambda$ consistently indicate the fully gapped superconductivity at $x=0.76$ and the (line) nodal superconductivity at higher hole concentrations. The magnitudes of $frac{kappa}{T}cdot T_c|_{T rightarrow 0,{rm K}}$ and $frac{dlambda}{d(T/T_c)}$ at low temperatures, both of which are determined by the properties of the low-energy excitations, exhibit a highly unusual non-monotonic x-dependence. These results indicate a dramatic change of the nodal characteristics in a narrow doping range, suggesting a doping crossover of the gap function between the s-wave states with and without sign reversal between $Gamma$-centered hole pockets.
We use inelastic neutron scattering to study the fate of the two spin resonance modes in underdoped superconducting NaFe$_{1-x}$Co$_x$As ($x=0.0175$) under applied magnetic fields. While an applied in-plane magnetic field of $B=12$ T only modestly suppresses superconductivity and enhances static antiferromagnetic order, the two spin resonance modes display disparate responses. The spin resonance mode at higher energy is mildly suppressed, consistent with the field effect in other unconventional superconductors. The spin resonance mode at lower energy, on the other hand, is almost completely suppressed. Such dramatically different responses to applied magnetic field indicate distinct origins of the two spin resonance modes, resulting from the strongly orbital-selective nature of spin excitations and Cooper-pairing in iron-based superconductors.
Magneto-structural phase transitions in Ba1-xAxFe2As2 (A = K, Na) materials are discussed for both magnetically and orbitally driven mechanisms, using a symmetry analysis formulated within the Landau theory of phase transitions. Both mechanisms predict identical orthorhombic space-group symmetries for the nematic and magnetic phases observed over much of the phase diagram, but they predict different tetragonal space-group symmetries for the newly discovered re-entrant tetragonal phase in Ba1-xNaxFe2As2 (x ~ 0.24-0.28). In a magnetic scenario, magnetic order with moments along the c-axis, as found experimentally, does not allow any type of orbital order, but in an orbital scenario, we have determined two possible orbital patterns, specified by P4/mnc1 and I4221 space groups, which do not require atomic displacements relative to the parent I4/mmm1 symmetry and, in consequence, are indistinguishable in conventional diffraction experiments. We demonstrate that the three possible space groups are however, distinct in resonant X-ray Bragg diffraction patterns created by Templeton & Templeton scattering. This provides an experimental method of distinguishing between magnetic and orbital models.
The mechanism of Cooper pair formation in iron-based superconductors remains a controversial topic. The main question is whether spin or orbital fluctuations are responsible for the pairing mechanism. To solve this problem, a crucial clue can be obtained by examining the remarkable enhancement of magnetic neutron scattering signals appearing in a superconducting phase. The enhancement is called spin resonance for a spin fluctuation model, in which their energy is restricted below twice the superconducting gap value (2Ds), whereas larger energies are possible in other models such as an orbital fluctuation model. Here we report the doping dependence of low-energy magnetic excitation spectra in Ba1-xKxFe2As2 for 0.5<x<0.84 studied by inelastic neutron scattering. We find that the behavior of the spin resonance dramatically changes from optimum to overdoped regions. Strong resonance peaks are observed clearly below 2Ds in the optimum doping region, while they are absent in the overdoped region. Instead, there is a transfer of spectral weight from energies below 2Ds to higher energies, peaking at values of 3Ds for x = 0.84. These results suggest a reduced impact of magnetism on Cooper pair formation in the overdoped region.