No Arabic abstract
We discuss the phase structure of QCD for $N_f=2$ and $N_f=2+1$ dynamical quark flavours at finite temperature and baryon chemical potential. It emerges dynamically from the underlying fundamental interactions between quarks and gluons in our work. To this end, starting from the perturbative high-energy regime, we systematically integrate-out quantum fluctuations towards low energies by using the functional renormalisation group. By dynamically hadronising the dominant interaction channels responsible for the formation of light mesons and quark condensates, we are able to extract the phase diagram for $mu_B/T lesssim 6$. We find a critical endpoint at $(T_text{CEP},{mu_B}_{text{CEP}})=(107, 635),text{MeV}$. The curvature of the phase boundary at small chemical potential is $kappa=0.0142(2)$, computed from the renormalised light chiral condensate $Delta_{l,R}$. Furthermore, we find indications for an inhomogeneous regime in the vicinity and above the chiral transition for $mu_Bgtrsim 417$ MeV. Where applicable, our results are in very good agreement with the most recent lattice results. We also compare to results from other functional methods and phenomenological freeze-out data. This indicates that a consistent picture of the phase structure at finite baryon chemical potential is beginning to emerge. The systematic uncertainty of our results grows large in the density regime around the critical endpoint and we discuss necessary improvements of our current approximation towards a quantitatively precise determination of QCD phase diagram.
Neither the chiral limit nor finite baryon density can be simulated directly in lattice QCD, which severely limits our understanding of the QCD phase diagram. In this review I collect results for the phase structure in an extended parameter space of QCD, with varying numbers of flavours, quark masses, colours, lattice spacings, imaginary and isospin chemical potentials. Such studies help in understanding the underlying symmetries and degrees of freedom, and are beginning to provide a consistent picture constraining the possibilities for the physical phase diagram.
I review recent developments in the studies of the phase structure and equation of state in finite temperature QCD on the lattice.
The lowest dimensional gluon condensate $G_2$ is analysed at finite temperature and chemical potential using a bottom/up holographic model of QCD. Starting from the free energy of the model, pressure, entropy and quark density are obtained. Moreover, at zero chemical potential, the temporal and spatial Wilson loops at low temperature are computed; they are related to the (chromo-)electric and magnetic components of $G_2$, respectively.
Dynamical symmetry breaking in three-dimensional QED with N fermion flavours is considered at finite temperature, in the large $N$ approximation. Using an approximate treatment of the Schwinger-Dyson equation for the fermion self-energy, we find that chiral symmetry is restored above a certain critical temperature which depends itself on $N$. We find that the ratio of the zero-momentum zero-temperature fermion mass to the critical temperature has a large value compared with four-fermion theories, as had been suggested in a previous work with a momentum-independent self-energy. Evidence of a temperature- dependent critical $N$ is shown to appear in this approximation. The phase diagram for spontaneous mass generation in the theory is presented in $T-N$ space.
We investigate the phase structure of 3-flavor QCD in the presence of finite quark chemical potential by using Wilson-Clover fermions. To deal with the complex action with finite density, we adopt the phase reweighting method. In order to survey a wide parameter region, we employ the multi-parameter reweighting method as well as the multi-ensemble reweighting method. Especially, we focus on locating the critical end point that characterizes the phase structure. It is estimated by the kurtosis intersection method for the quark condensate. For Wilson-type fermions, the correspondence between bare parameters and physical parameters is indirect, thus we present a strategy to transfer the bare parameter phase structure to the physical one. We conclude that the curvature with respect to the chemical potential is positive. This implies that, if one starts from a quark mass in the region of crossover at zero chemical potential, one would encounter a first-order phase transition when one raises the chemical potential.