Do you want to publish a course? Click here

Coherence-variance uncertainty relation and coherence cost for quantum measurement under conservation laws

159   0   0.0 ( 0 )
 Added by Hiroyasu Tajima
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Uncertainty relations are one of the fundamental principles in physics. It began as a fundamental limitation in quantum mechanics, and today the word {it uncertainty relation} is a generic term for various trade-off relations in nature. In this letter, we improve the Kennard-Robertson uncertainty relation, and clarify how much coherence we need to implement quantum measurement under conservation laws. Our approach systematically improves and reproduces the previous various refinements of the Kennard-Robertson inequality. As a direct consequence of our inequalities, we improve a well-known limitation of quantum measurements, the Wigner-Araki-Yanase-Ozawa theorem. This improvement gives an asymptotic equality for the necessary and sufficient amount of coherence to implement a quantum measurement with the desired accuracy under conservation laws.



rate research

Read More

Nature imposes many restrictions on the operations that we perform. Many of these restrictions can be interpreted in terms of {it resource} required to realize the operations. Classifying required resource for different types of operations and determining the amount of resource are the crucial subjects in physics. Among many types of operations, a unitary operation is one of the most fundamental operation that has been studied for long time in terms of the resource implicitly and explicitly. Yet, it is a long standing open problem to identify the resource and to clarify the necessary and sufficient amount of resource for implementing a general unitary operation under conservation laws. In this paper, we provide a solution to this open problem. We derive an asymptotically exact equality that clarifies the necessary and sufficient amount of quantum coherence as a resource to implement arbitrary unitary operation within a desired error. In this equality, the required coherence cost is asymptotically expressed with the implementation error and the degree of violation of conservation law in the desired unitary operation. We also discuss the underlying physics in several physical situations from the viewpoint of coherence cost based on the equality. This work does not only provide a solution to a long-standing problem on the unitary control, but also clarifies the key question of the resource theory of the quantum channels in the region of resource theory of asymmetry, for the case of unitary channels.
In Newtonian mechanics, any closed-system dynamics of a composite system in a microstate will leave all its individual subsystems in distinct microstates, however this fails dramatically in quantum mechanics due to the existence of quantum entanglement. Here we introduce the notion of a `coherent work process, and show that it is the direct extension of a work process in classical mechanics into quantum theory. This leads to the notion of `decomposable and `non-decomposable quantum coherence and gives a new perspective on recent results in the theory of asymmetry as well as early analysis in the theory of classical random variables. Within the context of recent fluctuation relations, originally framed in terms of quantum channels, we show that coherent work processes play the same role as their classical counterparts, and so provide a simple physical primitive for quantum coherence in such systems. We also introduce a pure state effective potential as a tool with which to analyze the coherent component of these fluctuation relations, and which leads to a notion of temperature-dependent mean coherence, provides connections with multi-partite entanglement, and gives a hierarchy of quantum corrections to the classical Crooks relation in powers of inverse temperature.
We introduce and study the task of assisted coherence distillation. This task arises naturally in bipartite systems where both parties work together to generate the maximal possible coherence on one of the subsystems. Only incoherent operations are allowed on the target system while general local quantum operations are permitted on the other, an operational paradigm that we call local quantum-incoherent operations and classical communication (LQICC). We show that the asymptotic rate of assisted coherence distillation for pure states is equal to the coherence of assistance, an analog of the entanglement of assistance, whose properties we characterize. Our findings imply a novel interpretation of the von Neumann entropy: it quantifies the maximum amount of extra quantum coherence a system can gain when receiving assistance from a collaborative party. Our results are generalized to coherence localization in a multipartite setting and possible applications are discussed.
We explore quantum and classical correlations along with coherence in the ground states of spin-1 Heisenberg chains, namely the one-dimensional XXZ model and the one-dimensional bilinear biquadratic model, with the techniques of density matrix renormalization group theory. Exploiting the tools of quantum information theory, that is, by studying quantum discord, quantum mutual information and three recently introduced coherence measures in the reduced density matrix of two nearest neighbor spins in the bulk, we investigate the quantum phase transitions and special symmetry points in these models. We point out the relative strengths and weaknesses of correlation and coherence measures as figures of merit to witness the quantum phase transitions and symmetry points in the considered spin-1 Heisenberg chains. In particular, we demonstrate that as none of the studied measures can detect the infinite order Kosterlitz-Thouless transition in the XXZ model, they appear to be able to signal the existence of the same type of transition in the biliear biquadratic model. However, we argue that what is actually detected by the measures here is the SU(3) symmetry point of the model rather than the infinite order quantum phase transition. Moreover, we show in the XXZ model that examining even single site coherence can be sufficient to spotlight the second-order phase transition and the SU(2) symmetry point.
109 - J.-P. Gazeau , T. Koide 2019
We revisit the problem of the uncertainty relation for angle by using quantum hydrodynamics formulated in the stochastic variational method (SVM), where we need not define the angle operator. We derive both the Kennard and Robertson-Schroedinger inequalities for canonical variables in polar coordinates. The inequalities have state-dependent minimum values which can be smaller than hbar/2 and then permit a finite uncertainty of angle for the eigenstate of the angular momentum. The present approach provides a useful methodology to study quantum behaviors in arbitrary canonical coordinates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا