On the top dimensional cohomology groups of congruence subgroups of $text{SL}_n(mathbb{Z})$


Abstract in English

Let $Gamma_n(p)$ be the level-$p$ principal congruence subgroup of $text{SL}_n(mathbb{Z})$. Borel-Serre proved that the cohomology of $Gamma_n(p)$ vanishes above degree $binom{n}{2}$. We study the cohomology in this top degree $binom{n}{2}$. Let $mathcal{T}_n(mathbb{Q})$ denote the Tits building of $text{SL}_n(mathbb{Q})$. Lee-Szczarba conjectured that $H^{binom{n}{2}}(Gamma_n(p))$ is isomorphic to $widetilde{H}_{n-2}(mathcal{T}_n(mathbb{Q})/Gamma_n(p))$ and proved that this holds for $p=3$. We partially prove and partially disprove this conjecture by showing that a natural map $H^{binom{n}{2}}(Gamma_n(p)) rightarrow widetilde{H}_{n-2}(mathcal{T}_n(mathbb{Q})/Gamma_n(p))$ is always surjective, but is only injective for $p leq 5$. In particular, we completely calculate $H^{binom{n}{2}}(Gamma_n(5))$ and improve known lower bounds for the ranks of $H^{binom{n}{2}}(Gamma_n(p))$ for $p geq 5$.

Download