No Arabic abstract
Let $Gamma_n(p)$ be the level-$p$ principal congruence subgroup of $text{SL}_n(mathbb{Z})$. Borel-Serre proved that the cohomology of $Gamma_n(p)$ vanishes above degree $binom{n}{2}$. We study the cohomology in this top degree $binom{n}{2}$. Let $mathcal{T}_n(mathbb{Q})$ denote the Tits building of $text{SL}_n(mathbb{Q})$. Lee-Szczarba conjectured that $H^{binom{n}{2}}(Gamma_n(p))$ is isomorphic to $widetilde{H}_{n-2}(mathcal{T}_n(mathbb{Q})/Gamma_n(p))$ and proved that this holds for $p=3$. We partially prove and partially disprove this conjecture by showing that a natural map $H^{binom{n}{2}}(Gamma_n(p)) rightarrow widetilde{H}_{n-2}(mathcal{T}_n(mathbb{Q})/Gamma_n(p))$ is always surjective, but is only injective for $p leq 5$. In particular, we completely calculate $H^{binom{n}{2}}(Gamma_n(5))$ and improve known lower bounds for the ranks of $H^{binom{n}{2}}(Gamma_n(p))$ for $p geq 5$.
For a number ring $mathcal{O}$, Borel and Serre proved that $text{SL}_n(mathcal{O})$ is a virtual duality group whose dualizing module is the Steinberg module. They also proved that $text{GL}_n(mathcal{O})$ is a virtual duality group. In contrast to $text{SL}_n(mathcal{O})$, we prove that the dualizing module of $text{GL}_n(mathcal{O})$ is sometimes the Steinberg module, but sometimes instead is a variant that takes into account a sort of orientation. Using this, we obtain vanishing and nonvanishing theorems for the cohomology of $text{GL}_n(mathcal{O})$ in its virtual cohomological dimension.
We describe torsion classes in the first cohomology group of $text{SL}_2(mathbb{Z})$. In particular, we obtain generalized Dicksons invariants for p-power polynomial rings. Secondly, we describe torsion classes in the zero-th homology group of $text{SL}_2(mathbb{Z})$ as a module over the torsion invariants. As application, we obtain various congruences between cuspidal forms of level one and Eisenstein series.
These are the lecture notes for my course at the 2011 Park City Mathematics Graduate Summer School. The first two lectures covered the basics of the Torelli group and the Johnson homomorphism, and the third and fourth lectures discussed the second cohomology group of the level p congruence subgroup of the mapping class group, following my papers The second rational homology group of the moduli space of curves with level structures and The Picard group of the moduli space of curves with level structures.
We know that $mathbb{Z}_n$ is a finite field for a prime number $n$. Let $m,n$ be arbitrary natural numbers and let $mathbb{Z}^m_n= mathbb{Z}_n timesmathbb{Z}_ntimes...timesmathbb{Z}_n$ be the Cartesian product of $m$ rings $mathbb{Z}_n$. In this note, we present the action of $SL(m, mathbb{Z}_n)={A in mathbb{Z}^{m,m}_{n} : det A equiv 1 (modsimn)}$, where $SL(m, mathbb{Z}_n)$ for $ngeq 2$ is a group under matrix multiplication modulo $n$, on the ring $mathbb{Z}^m_n$ as a right multiplication of a row vector of $mathbb{Z}^m_n$ by a matrix of $SL(m, mathbb{Z}_n)$ to determine the orbits of the ring $mathbb{Z}^m_n$. This work is an extension of [1]
Let $F$ be any field. We give a short and elementary proof that any finite subgroup $G$ of $PGL(2,F)$ occurs as a Galois group over the function field $F(x)$. We also develop a theory of descent to subfields of $F$. This enables us to realize the automorphism groups of finite subgroups of $PGL(2,F)$ as Galois groups.