Do you want to publish a course? Click here

Dispersion Characterization and Pulse Prediction with Machine Learning

386   0   0.0 ( 0 )
 Added by Sanjaya Lohani
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In this work we demonstrate the efficacy of neural networks in the characterization of dispersive media. We also develop a neural network to make predictions for input probe pulses which propagate through a nonlinear dispersive medium, which may be applied to predicting optimal pulse shapes for a desired output. The setup requires only a single pulse for the probe, providing considerable simplification of the current method of dispersion characterization that requires frequency scanning across the entirety of the gain and absorption features. We show that the trained networks are able to predict pulse profiles as well as dispersive features that are nearly identical to their experimental counterparts. We anticipate that the use of machine learning in conjunction with optical communication and sensing methods, both classical and quantum, can provide signal enhancement and experimental simplifications even in the face of highly complex, layered nonlinear light-matter interactions.



rate research

Read More

Academics and practitioners have studied over the years models for predicting firms bankruptcy, using statistical and machine-learning approaches. An earlier sign that a company has financial difficulties and may eventually bankrupt is going in emph{default}, which, loosely speaking means that the company has been having difficulties in repaying its loans towards the banking system. Firms default status is not technically a failure but is very relevant for bank lending policies and often anticipates the failure of the company. Our study uses, for the first time according to our knowledge, a very large database of granular credit data from the Italian Central Credit Register of Bank of Italy that contain information on all Italian companies past behavior towards the entire Italian banking system to predict their default using machine-learning techniques. Furthermore, we combine these data with other information regarding companies public balance sheet data. We find that ensemble techniques and random forest provide the best results, corroborating the findings of Barboza et al. (Expert Syst. Appl., 2017).
This article presents a general framework for recovering missing dynamical systems using available data and machine learning techniques. The proposed framework reformulates the prediction problem as a supervised learning problem to approximate a map that takes the memories of the resolved and identifiable unresolved variables to the missing components in the resolved dynamics. We demonstrate the effectiveness of the proposed framework with a theoretical guarantee of a path-wise convergence of the resolved variables up to finite time and numerical tests on prototypical models in various scientific domains. These include the 57-mode barotropic stress models with multiscale interactions that mimic the blocked and unblocked patterns observed in the atmosphere, the nonlinear Schr{o}dinger equation which found many applications in physics such as optics and Bose-Einstein-Condense, the Kuramoto-Sivashinsky equation which spatiotemporal chaotic pattern formation models trapped ion mode in plasma and phase dynamics in reaction-diffusion systems. While many machine learning techniques can be used to validate the proposed framework, we found that recurrent neural networks outperform kernel regression methods in terms of recovering the trajectory of the resolved components and the equilibrium one-point and two-point statistics. This superb performance suggests that recurrent neural networks are an effective tool for recovering the missing dynamics that involves approximation of high-dimensional functions.
Longitudinal Dispersion(LD) is the dominant process of scalar transport in natural streams. An accurate prediction on LD coefficient(Dl) can produce a performance leap in related simulation. The emerging machine learning(ML) techniques provide a self-adaptive tool for this problem. However, most of the existing studies utilize an unproved quaternion feature set, obtained through simple theoretical deduction. Few studies have put attention on its reliability and rationality. Besides, due to the lack of comparative comparison, the proper choice of ML models in different scenarios still remains unknown. In this study, the Feature Gradient selector was first adopted to distill the local optimal feature sets directly from multivariable data. Then, a global optimal feature set (the channel width, the flow velocity, the channel slope and the cross sectional area) was proposed through numerical comparison of the distilled local optimums in performance with representative ML models. The channel slope is identified to be the key parameter for the prediction of LDC. Further, we designed a weighted evaluation metric which enables comprehensive model comparison. With the simple linear model as the baseline, a benchmark of single and ensemble learning models was provided. Advantages and disadvantages of the methods involved were also discussed. Results show that the support vector machine has significantly better performance than other models. Decision tree is not suitable for this problem due to poor generalization ability. Notably, simple models show superiority over complicated model on this low-dimensional problem, for their better balance between regression and generalization.
We present an ongoing R&D activity for machine-learning-assisted navigation through detectors to be used for track reconstruction. We investigate different approaches of training neural networks for surface prediction and compare their results. This work is carried out in the context of the ACTS tracking toolkit.
Stock price prediction is a challenging task, but machine learning methods have recently been used successfully for this purpose. In this paper, we extract over 270 hand-crafted features (factors) inspired by technical and quantitative analysis and tested their validity on short-term mid-price movement prediction. We focus on a wrapper feature selection method using entropy, least-mean squares, and linear discriminant analysis. We also build a new quantitative feature based on adaptive logistic regression for online learning, which is constantly selected first among the majority of the proposed feature selection methods. This study examines the best combination of features using high frequency limit order book data from Nasdaq Nordic. Our results suggest that sorting methods and classifiers can be used in such a way that one can reach the best performance with a combination of only very few advanced hand-crafted features.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا