Self-organizing memristive nanowire networks with structural plasticity emulate biological neuronal circuits


Abstract in English

Acting as artificial synapses, two-terminal memristive devices are considered fundamental building blocks for the realization of artificial neural networks. Organized into large arrays with a top-down approach, memristive devices in conventional crossbar architecture demonstrated the implementation of brain-inspired computing for supervised and unsupervised learning. Alternative way using unconventional systems consisting of many interacting nano-parts have been proposed for the realization of biologically plausible architectures where the emergent behavior arises from a complexity similar to that of biological neural circuits. However, these systems were unable to demonstrate bio-realistic implementation of synaptic functionalities with spatio-temporal processing of input signals similarly to our brain. Here we report on emergent synaptic behavior of biologically inspired nanoarchitecture based on self-assembled and highly interconnected nanowire (NW) networks realized with a bottom up approach. The operation principle of this system is based on the mutual electrochemical interaction among memristive NWs and NW junctions composing the network and regulating its connectivity depending on the input stimuli. The functional connectivity of the system was shown to be responsible for heterosynaptic plasticity that was experimentally demonstrated and modelled in a multiterminal configuration, where the formation of a synaptic pathway between two neuron terminals is responsible for a variation in synaptic strength also at non-stimulated terminals. These results highlight the ability of nanowire memristive architectures for building brain-inspired intelligent systems based on complex networks able to physically compute the information arising from multi-terminal inputs.

Download