Do you want to publish a course? Click here

Compositional Embeddings Using Complementary Partitions for Memory-Efficient Recommendation Systems

110   0   0.0 ( 0 )
 Added by Hao-Jun Shi
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Modern deep learning-based recommendation systems exploit hundreds to thousands of different categorical features, each with millions of different categories ranging from clicks to posts. To respect the natural diversity within the categorical data, embeddings map each category to a unique dense representation within an embedded space. Since each categorical feature could take on as many as tens of millions of different possible categories, the embedding tables form the primary memory bottleneck during both training and inference. We propose a novel approach for reducing the embedding size in an end-to-end fashion by exploiting complementary partitions of the category set to produce a unique embedding vector for each category without explicit definition. By storing multiple smaller embedding tables based on each complementary partition and combining embeddings from each table, we define a unique embedding for each category at smaller memory cost. This approach may be interpreted as using a specific fixed codebook to ensure uniqueness of each categorys representation. Our experimental results demonstrate the effectiveness of our approach over the hashing trick for reducing the size of the embedding tables in terms of model loss and accuracy, while retaining a similar reduction in the number of parameters.



rate research

Read More

Embedding representations power machine intelligence in many applications, including recommendation systems, but they are space intensive -- potentially occupying hundreds of gigabytes in large-scale settings. To help manage this outsized memory consumption, we explore mixed dimension embeddings, an embedding layer architecture in which a particular embedding vectors dimension scales with its query frequency. Through theoretical analysis and systematic experiments, we demonstrate that using mixed dimensions can drastically reduce the memory usage, while maintaining and even improving the ML performance. Empirically, we show that the proposed mixed dimension layers improve accuracy by 0.1% using half as many parameters or maintain it using 16X fewer parameters for click-through rate prediction task on the Criteo Kaggle dataset.
We propose a novel learning framework to answer questions such as if a user is purchasing a shirt, what other items will (s)he need with the shirt? Our framework learns distributed representations for items from available textual data, with the learned representations representing items in a latent space expressing functional complementarity as well similarity. In particular, our framework places functionally similar items close together in the latent space, while also placing complementary items closer than non-complementary items, but farther away than similar items. In this study, we introduce a new dataset of similar, complementary, and negative items derived from the Amazon co-purchase dataset. For evaluation purposes, we focus our approach on clothing and fashion verticals. As per our knowledge, this is the first attempt to learn similar and complementary relationships simultaneously through just textual title metadata. Our framework is applicable across a broad set of items in the product catalog and can generate quality complementary item recommendations at scale.
We present a generative model for complex free-form structures such as stroke-based drawing tasks. While previous approaches rely on sequence-based models for drawings of basic objects or handwritten text, we propose a model that treats drawings as a collection of strokes that can be composed into complex structures such as diagrams (e.g., flow-charts). At the core of the approach lies a novel autoencoder that projects variable-length strokes into a latent space of fixed dimension. This representation space allows a relational model, operating in latent space, to better capture the relationship between strokes and to predict subsequent strokes. We demonstrate qualitatively and quantitatively that our proposed approach is able to model the appearance of individual strokes, as well as the compositional structure of larger diagram drawings. Our approach is suitable for interactive use cases such as auto-completing diagrams. We make code and models publicly available at https://eth-ait.github.io/cose.
The success of recommender systems in modern online platforms is inseparable from the accurate capture of users personal tastes. In everyday life, large amounts of user feedback data are created along with user-item online interactions in a variety of ways, such as browsing, purchasing, and sharing. These multiple types of user feedback provide us with tremendous opportunities to detect individuals fine-grained preferences. Different from most existing recommender systems that rely on a single type of feedback, we advocate incorporating multiple types of user-item interactions for better recommendations. Based on the observation that the underlying spectrum of user preferences is reflected in various types of interactions with items and can be uncovered by latent relational learning in metric space, we propose a unified neural learning framework, named Multi-Relational Memory Network (MRMN). It can not only model fine-grained user-item relations but also enable us to discriminate between feedback types in terms of the strength and diversity of user preferences. Extensive experiments show that the proposed MRMN model outperforms competitive state-of-the-art algorithms in a wide range of scenarios, including e-commerce, local services, and job recommendations.
As one of the simplest probabilistic topic modeling techniques, latent Dirichlet allocation (LDA) has found many important applications in text mining, computer vision and computational biology. Recent training algorithms for LDA can be interpreted within a unified message passing framework. However, message passing requires storing previous messages with a large amount of memory space, increasing linearly with the number of documents or the number of topics. Therefore, the high memory usage is often a major problem for topic modeling of massive corpora containing a large number of topics. To reduce the space complexity, we propose a novel algorithm without storing previous messages for training LDA: tiny belief propagation (TBP). The basic idea of TBP relates the message passing algorithms with the non-negative matrix factorization (NMF) algorithms, which absorb the message updating into the message passing process, and thus avoid storing previous messages. Experimental results on four large data sets confirm that TBP performs comparably well or even better than current state-of-the-art training algorithms for LDA but with a much less memory consumption. TBP can do topic modeling when massive corpora cannot fit in the computer memory, for example, extracting thematic topics from 7 GB PUBMED corpora on a common desktop computer with 2GB memory.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا