Do you want to publish a course? Click here

Holistic++ Scene Understanding: Single-view 3D Holistic Scene Parsing and Human Pose Estimation with Human-Object Interaction and Physical Commonsense

113   0   0.0 ( 0 )
 Added by Siyuan Huang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We propose a new 3D holistic++ scene understanding problem, which jointly tackles two tasks from a single-view image: (i) holistic scene parsing and reconstruction---3D estimations of object bounding boxes, camera pose, and room layout, and (ii) 3D human pose estimation. The intuition behind is to leverage the coupled nature of these two tasks to improve the granularity and performance of scene understanding. We propose to exploit two critical and essential connections between these two tasks: (i) human-object interaction (HOI) to model the fine-grained relations between agents and objects in the scene, and (ii) physical commonsense to model the physical plausibility of the reconstructed scene. The optimal configuration of the 3D scene, represented by a parse graph, is inferred using Markov chain Monte Carlo (MCMC), which efficiently traverses through the non-differentiable joint solution space. Experimental results demonstrate that the proposed algorithm significantly improves the performance of the two tasks on three datasets, showing an improved generalization ability.



rate research

Read More

We propose a computational framework to jointly parse a single RGB image and reconstruct a holistic 3D configuration composed by a set of CAD models using a stochastic grammar model. Specifically, we introduce a Holistic Scene Grammar (HSG) to represent the 3D scene structure, which characterizes a joint distribution over the functional and geometric space of indoor scenes. The proposed HSG captures three essential and often latent dimensions of the indoor scenes: i) latent human context, describing the affordance and the functionality of a room arrangement, ii) geometric constraints over the scene configurations, and iii) physical constraints that guarantee physically plausible parsing and reconstruction. We solve this joint parsing and reconstruction problem in an analysis-by-synthesis fashion, seeking to minimize the differences between the input image and the rendered images generated by our 3D representation, over the space of depth, surface normal, and object segmentation map. The optimal configuration, represented by a parse graph, is inferred using Markov chain Monte Carlo (MCMC), which efficiently traverses through the non-differentiable solution space, jointly optimizing object localization, 3D layout, and hidden human context. Experimental results demonstrate that the proposed algorithm improves the generalization ability and significantly outperforms prior methods on 3D layout estimation, 3D object detection, and holistic scene understanding.
We present a new pipeline for holistic 3D scene understanding from a single image, which could predict object shapes, object poses, and scene layout. As it is a highly ill-posed problem, existing methods usually suffer from inaccurate estimation of both shapes and layout especially for the cluttered scene due to the heavy occlusion between objects. We propose to utilize the latest deep implicit representation to solve this challenge. We not only propose an image-based local structured implicit network to improve the object shape estimation, but also refine the 3D object pose and scene layout via a novel implicit scene graph neural network that exploits the implicit local object features. A novel physical violation loss is also proposed to avoid incorrect context between objects. Extensive experiments demonstrate that our method outperforms the state-of-the-art methods in terms of object shape, scene layout estimation, and 3D object detection.
Panorama images have a much larger field-of-view thus naturally encode enriched scene context information compared to standard perspective images, which however is not well exploited in the previous scene understanding methods. In this paper, we propose a novel method for panoramic 3D scene understanding which recovers the 3D room layout and the shape, pose, position, and semantic category for each object from a single full-view panorama image. In order to fully utilize the rich context information, we design a novel graph neural network based context model to predict the relationship among objects and room layout, and a differentiable relationship-based optimization module to optimize object arrangement with well-designed objective functions on-the-fly. Realizing the existing data are either with incomplete ground truth or overly-simplified scene, we present a new synthetic dataset with good diversity in room layout and furniture placement, and realistic image quality for total panoramic 3D scene understanding. Experiments demonstrate that our method outperforms existing methods on panoramic scene understanding in terms of both geometry accuracy and object arrangement. Code is available at https://chengzhag.github.io/publication/dpc.
Full 3D estimation of human pose from a single image remains a challenging task despite many recent advances. In this paper, we explore the hypothesis that strong prior information about scene geometry can be used to improve pose estimation accuracy. To tackle this question empirically, we have assembled a novel $textbf{Geometric Pose Affordance}$ dataset, consisting of multi-view imagery of people interacting with a variety of rich 3D environments. We utilized a commercial motion capture system to collect gold-standard estimates of pose and construct accurate geometric 3D CAD models of the scene itself. To inject prior knowledge of scene constraints into existing frameworks for pose estimation from images, we introduce a novel, view-based representation of scene geometry, a $textbf{multi-layer depth map}$, which employs multi-hit ray tracing to concisely encode multiple surface entry and exit points along each camera view ray direction. We propose two different mechanisms for integrating multi-layer depth information pose estimation: input as encoded ray features used in lifting 2D pose to full 3D, and secondly as a differentiable loss that encourages learned models to favor geometrically consistent pose estimates. We show experimentally that these techniques can improve the accuracy of 3D pose estimates, particularly in the presence of occlusion and complex scene geometry.
We propose a novel approach to 3D human pose estimation from a single depth map. Recently, convolutional neural network (CNN) has become a powerful paradigm in computer vision. Many of computer vision tasks have benefited from CNNs, however, the conventional approach to directly regress 3D body joint locations from an image does not yield a noticeably improved performance. In contrast, we formulate the problem as estimating per-voxel likelihood of key body joints from a 3D occupancy grid. We argue that learning a mapping from volumetric input to volumetric output with 3D convolution consistently improves the accuracy when compared to learning a regression from depth map to 3D joint coordinates. We propose a two-stage approach to reduce the computational overhead caused by volumetric representation and 3D convolution: Holistic 2D prediction and Local 3D prediction. In the first stage, Planimetric Network (P-Net) estimates per-pixel likelihood for each body joint in the holistic 2D space. In the second stage, Volumetric Network (V-Net) estimates the per-voxel likelihood of each body joints in the local 3D space around the 2D estimations of the first stage, effectively reducing the computational cost. Our model outperforms existing methods by a large margin in publicly available datasets.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا