A Conjectural Inequality for Visible Points in Lattice Parallelograms


Abstract in English

Let $a,n in mathbb{Z}^+$, with $a<n$ and $gcd(a,n)=1$. Let $P_{a,n}$ denote the lattice parallelogram spanned by $(1,0)$ and $(a,n)$, that is, $$P_{a,n} = left{ t_1(1,0)+ t_2(a,n) , : , 0leq t_1,t_2 leq 1 right}, $$ and let $$V(a,n) = # textrm{ of visible lattice points in the interior of } P_{a,n}.$$ In this paper we prove some elementary (and straightforward) results for $V(a,n)$. The most interesting aspects of the paper are in Section 5 where we discuss some numerics and display some graphs of $V(a,n)/n$. (These graphs resemble an integral sign that has been rotated counter-clockwise by $90^circ$.) The numerics and graphs suggest the conjecture that for $a ot= 1, n-1$, $V(a,n)/n$ satisfies the inequality $$ 0.5 < V(a,n)/n< 0.75.$$

Download