No Arabic abstract
In Dunfields catalog of the hyperbolic manifolds in the SnapPy census which are complements of L-space knots in $S^3$, we determine that $22$ have tunnel number $2$ while the remaining all have tunnel number $1$. Notably, these $22$ manifolds contain $9$ asymmetric L-space knot complements. Furthermore, using SnapPy and KLO we find presentations of these $22$ knots as closures of positive braids that realize the Morton-Franks-Williams bound on braid index. The smallest of these has genus $12$ and braid index $4$.
A knot k in a closed orientable 3-manifold is called nonsimple if the exterior of k possesses a properly embedded essential surface of nonnegative Euler characteristic. We show that if k is a nonsimple prime tunnel number one knot in a lens space M (where M does not contain any embedded Klein bottles), then k is a (1,1) knot. Elements of the proof include handle addition and Dehn filling results/techniques of Jaco, Eudave-Munoz and Gordon as well as structure results of Schultens on the Heegaard splittings of graph manifolds.
We give a new, conceptually simpler proof of the fact that knots in $S^3$ with positive L-space surgeries are fibered and strongly quasipositive. Our motivation for doing so is that this new proof uses comparatively little Heegaard Floer-specific machinery and can thus be translated to other forms of Floer homology. We carried this out for instanton Floer homology in our recent article Instantons and L-space surgeries, and used it to generalize Kronheimer and Mrowkas results on $SU(2)$ representations of fundamental groups of Dehn surgeries.
We show that the crossing number of a satellite knot is at least 10^{-13} times the crossing number of its companion knot.
We provide a new proof of the following results of H. Schubert: If K is a satellite knot with companion J and pattern L that lies in a solid torus T in which it has index k, then the bridge numbers satisfy the following: 1) The bridge number of K is greater than or equal to the product of k and the bridge number of J; 2) If K is a composite knot (this is the case k = 1), then the bridge number of K is one less than the sum of the bridge numbers of J and L.
The Thurston norm of a 3-manifold measures the complexity of surfaces representing two-dimensional homology classes. We study the possible unit balls of Thurston norms of 3-manifolds $M$ with $b_1(M) = 2$, and whose fundamental groups admit presentations with two generators and one relator. We show that even among this special class, there are 3-manifolds such that the unit ball of the Thurston norm has arbitrarily many faces.