No Arabic abstract
We present a novel deep learning based algorithm for video inpainting. Video inpainting is a process of completing corrupted or missing regions in videos. Video inpainting has additional challenges compared to image inpainting due to the extra temporal information as well as the need for maintaining the temporal coherency. We propose a novel DNN-based framework called the Copy-and-Paste Networks for video inpainting that takes advantage of additional information in other frames of the video. The network is trained to copy corresponding contents in reference frames and paste them to fill the holes in the target frame. Our network also includes an alignment network that computes affine matrices between frames for the alignment, enabling the network to take information from more distant frames for robustness. Our method produces visually pleasing and temporally coherent results while running faster than the state-of-the-art optimization-based method. In addition, we extend our framework for enhancing over/under exposed frames in videos. Using this enhancement technique, we were able to significantly improve the lane detection accuracy on road videos.
Video inpainting aims to fill spatio-temporal holes with plausible content in a video. Despite tremendous progress of deep neural networks for image inpainting, it is challenging to extend these methods to the video domain due to the additional time dimension. In this work, we propose a novel deep network architecture for fast video inpainting. Built upon an image-based encoder-decoder model, our framework is designed to collect and refine information from neighbor frames and synthesize still-unknown regions. At the same time, the output is enforced to be temporally consistent by a recurrent feedback and a temporal memory module. Compared with the state-of-the-art image inpainting algorithm, our method produces videos that are much more semantically correct and temporally smooth. In contrast to the prior video completion method which relies on time-consuming optimization, our method runs in near real-time while generating competitive video results. Finally, we applied our framework to video retargeting task, and obtain visually pleasing results.
The aim of re-identification is to match objects in surveillance cameras with different viewpoints. Although ReID is developing at a considerably rapid pace, there is currently no processing method for the ReID task in multiple scenarios. However, such processing method is required in real life scenarios, such as those involving security. In the present study, a new ReID scenario was explored, which differs in terms of perspective, background, and pose(walking or cycling). Obviously, ordinary ReID processing methods cannot effectively handle such a scenario, with the introduction of image datasets being the optimal solution, in addition to being considerably expensive. To solve the aforementioned problem, a simple and effective method to generate images in several new scenarios was proposed, which is names the Copy and Paste method based on Pose(CPP). The CPP method is based on key point detection, using copy as paste, to composite a new semantic image dataset in two different semantic image datasets. As an example, pedestrains and bicycles can be used to generate several images that show the same person riding on different bicycles. The CPP method is suitable for ReID tasks in new scenarios and outperforms the traditional methods when applied to the original datasets in original ReID tasks. To be specific, the CPP method can also perform better in terms of generalization for third-party public dataset. The Code and datasets composited by the CPP method will be available in the future.
This paper addresses the problem of face video inpainting. Existing video inpainting methods target primarily at natural scenes with repetitive patterns. They do not make use of any prior knowledge of the face to help retrieve correspondences for the corrupted face. They therefore only achieve sub-optimal results, particularly for faces under large pose and expression variations where face components appear very differently across frames. In this paper, we propose a two-stage deep learning method for face video inpainting. We employ 3DMM as our 3D face prior to transform a face between the image space and the UV (texture) space. In Stage I, we perform face inpainting in the UV space. This helps to largely remove the influence of face poses and expressions and makes the learning task much easier with well aligned face features. We introduce a frame-wise attention module to fully exploit correspondences in neighboring frames to assist the inpainting task. In Stage II, we transform the inpainted face regions back to the image space and perform face video refinement that inpaints any background regions not covered in Stage I and also refines the inpainted face regions. Extensive experiments have been carried out which show our method can significantly outperform methods based merely on 2D information, especially for faces under large pose and expression variations.
Existing face hallucination methods based on convolutional neural networks (CNN) have achieved impressive performance on low-resolution (LR) faces in a normal illumination condition. However, their performance degrades dramatically when LR faces are captured in low or non-uniform illumination conditions. This paper proposes a Copy and Paste Generative Adversarial Network (CPGAN) to recover authentic high-resolution (HR) face images while compensating for low and non-uniform illumination. To this end, we develop two key components in our CPGAN: internal and external Copy and Paste nets (CPnets). Specifically, our internal CPnet exploits facial information residing in the input image to enhance facial details; while our external CPnet leverages an external HR face for illumination compensation. A new illumination compensation loss is thus developed to capture illumination from the external guided face image effectively. Furthermore, our method offsets illumination and upsamples facial details alternately in a coarse-to-fine fashion, thus alleviating the correspondence ambiguity between LR inputs and external HR inputs. Extensive experiments demonstrate that our method manifests authentic HR face images in a uniform illumination condition and outperforms state-of-the-art methods qualitatively and quantitatively.
Building instance segmentation models that are data-efficient and can handle rare object categories is an important challenge in computer vision. Leveraging data augmentations is a promising direction towards addressing this challenge. Here, we perform a systematic study of the Copy-Paste augmentation ([13, 12]) for instance segmentation where we randomly paste objects onto an image. Prior studies on Copy-Paste relied on modeling the surrounding visual context for pasting the objects. However, we find that the simple mechanism of pasting objects randomly is good enough and can provide solid gains on top of strong baselines. Furthermore, we show Copy-Paste is additive with semi-supervised methods that leverage extra data through pseudo labeling (e.g. self-training). On COCO instance segmentation, we achieve 49.1 mask AP and 57.3 box AP, an improvement of +0.6 mask AP and +1.5 box AP over the previous state-of-the-art. We further demonstrate that Copy-Paste can lead to significant improvements on the LVIS benchmark. Our baseline model outperforms the LVIS 2020 Challenge winning entry by +3.6 mask AP on rare categories.