Do you want to publish a course? Click here

Generation of Cooperative Perception Messages for Connected and Automated Vehicles

97   0   0.0 ( 0 )
 Added by Miguel Sepulcre
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Connected and Automated Vehicles (CAVs) utilize a variety of onboard sensors to sense their surrounding environment. CAVs can improve their perception capabilities if vehicles exchange information about what they sense using V2X communications. This is known as cooperative or collective perception (or sensing). A frequent transmission of collective perception messages could improve the perception capabilities of CAVs. However, this improvement can be compromised if vehicles generate too many messages and saturate the communications channel. An important aspect is then when vehicles should generate the perception messages. ETSI has proposed the first set of message generation rules for collective perception. These rules define when vehicles should generate collective perception messages and what should be their content. We show that the current rules generate a high number of collective perception messages with information about a small number of detected objects. This results in an inefficient use of the communication channel that reduces the effectiveness of collective perception. We address this challenge and propose an improved algorithm that modifies the generation of collective perception messages. We demonstrate that the proposed solution improves the reliability of V2X communication and the perception of CAVs.



rate research

Read More

Wireless communication is a basis of the vision of connected and automated vehicles (CAVs). Given the heterogeneity of both wireless communication technologies and CAV applications, one question that is critical to technology road-mapping and policy making is which communication technology is more suitable for a specific CAV application. Focusing on the technical aspect of this question, we present a multi-scale spatiotemporal perspective of wireless communication technologies as well as canonical CAV applications in active safety, fuel economy and emission control, vehicle automation, and vehicular infotainment. Our analysis shows that CAV applications in the regime of small spatiotemporal scale communication requirements are best supported by V2V communications, applications in the regime of large spatiotemporal scale communication requirements are better supported by cellular communications, and applications in the regime of small spatial scale but medium-to-large temporal scale can be supported by both V2V and cellular communications and provide the opportunity of leveraging heterogeneous communication resources.
This paper presents a cooperative vehicle sorting strategy that seeks to optimally sort connected and automated vehicles (CAVs) in a multi-lane platoon to reach an ideally organized platoon. In the proposed method, a CAV platoon is firstly discretized into a grid system, where a CAV moves from one cell to another in the discrete time-space domain. Then, the cooperative sorting problem is modeled as a path-finding problem in the graphic domain. The problem is solved by the deterministic Astar algorithm with a stepwise strategy, where only one vehicle can move within a movement step. The resultant shortest path is further optimized with an integer linear programming algorithm to minimize the sorting time by allowing multiple movements within a step. To improve the algorithm running time and address multiple shortest paths, a distributed stochastic Astar algorithm (DSA) is developed by introducing random disturbances to the edge costs to break uniform paths (with equal path cost). Numerical experiments are conducted to demonstrate the effectiveness of the proposed DSA method. The results report shorter sorting time and significantly improved algorithm running time due to the use of DSA. In addition, we find that the optimization performance can be further improved by increasing the number of processes in the distributed computing system.
This paper investigates the cooperative planning and control problem for multiple connected autonomous vehicles (CAVs) in different scenarios. In the existing literature, most of the methods suffer from significant problems in computational efficiency. Besides, as the optimization problem is nonlinear and nonconvex, it typically poses great difficultly in determining the optimal solution. To address this issue, this work proposes a novel and completely parallel computation framework by leveraging the alternating direction method of multipliers (ADMM). The nonlinear and nonconvex optimization problem in the autonomous driving problem can be divided into two manageable subproblems; and the resulting subproblems can be solved by using effective optimization methods in a parallel framework. Here, the differential dynamic programming (DDP) algorithm is capable of addressing the nonlinearity of the system dynamics rather effectively; and the nonconvex coupling constraints with small dimensions can be approximated by invoking the notion of semi-definite relaxation (SDR), which can also be solved in a very short time. Due to the parallel computation and efficient relaxation of nonconvex constraints, our proposed approach effectively realizes real-time implementation and thus also extra assurance of driving safety is provided. In addition, two transportation scenarios for multiple CAVs are used to illustrate the effectiveness and efficiency of the proposed method.
As vehicles playing an increasingly important role in peoples daily life, requirements on safer and more comfortable driving experience have arisen. Connected vehicles (CVs) can provide enabling technologies to realize these requirements and have attracted widespread attentions from both academia and industry. These requirements ask for a well-designed computing architecture to support the Quality-of-Service (QoS) of CV applications. Computation offloading techniques, such as cloud, edge, and fog computing, can help CVs process computation-intensive and large-scale computing tasks. Additionally, different cloud/edge/fog computing architectures are suitable for supporting different types of CV applications with highly different QoS requirements, which demonstrates the importance of the computing architecture design. However, most of the existing surveys on cloud/edge/fog computing for CVs overlook the computing architecture design, where they (i) only focus on one specific computing architecture and (ii) lack discussions on benefits, research challenges, and system requirements of different architectural alternatives. In this paper, we provide a comprehensive survey on different architectural design alternatives based on cloud/edge/fog computing for CVs. The contributions of this paper are: (i) providing a comprehensive literature survey on existing proposed architectural design alternatives based on cloud/edge/fog computing for CVs, (ii) proposing a new classification of computing architectures based on cloud/edge/fog computing for CVs: computation-aided and computation-enabled architectures, (iii) presenting a holistic comparison among different cloud/edge/fog computing architectures for CVs based on functional requirements of CV systems, including advantages, disadvantages, and research challenges.
Connected vehicles will change the modes of future transportation management and organization, especially at an intersection without traffic light. Centralized coordination methods globally coordinate vehicles approaching the intersection from all sections by considering their states altogether. However, they need substantial computation resources since they own a centralized controller to optimize the trajectories for all approaching vehicles in real-time. In this paper, we propose a centralized coordination scheme of automated vehicles at an intersection without traffic signals using reinforcement learning (RL) to address low computation efficiency suffered by current centralized coordination methods. We first propose an RL training algorithm, model accelerated proximal policy optimization (MA-PPO), which incorporates a prior model into proximal policy optimization (PPO) algorithm to accelerate the learning process in terms of sample efficiency. Then we present the design of state, action and reward to formulate centralized coordination as an RL problem. Finally, we train a coordinate policy in a simulation setting and compare computing time and traffic efficiency with a coordination scheme based on model predictive control (MPC) method. Results show that our method spends only 1/400 of the computing time of MPC and increase the efficiency of the intersection by 4.5 times.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا