Do you want to publish a course? Click here

A game of alignment:collective behavior of multi-species

63   0   0.0 ( 0 )
 Added by Eitan Tadmor
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We study the (hydro-)dynamics of multi-species driven by alignment. What distinguishes the different species is the protocol of their interaction with the rest of the crowd: the collective motion is described by different communication kernels, $phi_{alphabeta}$, between the crowds in species $alpha$ and $beta$. We show that flocking of the overall crowd emerges provided the communication array between species forms a connected graph. In particular, the crowd within each species need not interact with its own kind, i.e., $phi_{alphaalpha}=0$; different species which are engaged in such `game of alignment require a connecting path for propagation of information which will lead to the flocking of overall crowd. The same methodology applies to multi-species aggregation dynamics governed by first-order alignment: connectivity implies concentration around an emerging consensus.



rate research

Read More

For any $N geq 2$, we show that there are choices of diffusion rates ${d_i}_{i=1}^N$ such that for $N$ competing species which are ecologically identical and having distinct diffusion rates, the slowest diffuser is able to competitive exclude the remainder of the species. In fact, the choices of such diffusion rates is open in the Hausdorff topology. Our result provides some evidence in the affirmative direction regarding the conjecture by Dockery et al. in cite{Dockery1998}. The main tools include Morse decomposition of the semiflow, as well as the theory of normalized principal bundle for linear parabolic equations.
627 - Xiaojie Hou , Yi Li 2013
This paper studies the traveling wave solutions to a three species competition cooperation system. The existence of the traveling waves is investigated via monotone iteration method. The upper and lower solutions come from either the waves of KPP equation or those of certain Lotka Volterra system. We also derive the asymptotics and uniqueness of the wave solutions. The results are then applied to a Lotka Volterra system with spatially averaged and temporally delayed competition.
Here we consider the nonlocal Cahn-Hilliard equation with constant mobility in a bounded domain. We prove that the associated dynamical system has an exponential attractor, provided that the potential is regular. In order to do that a crucial step is showing the eventual boundedness of the order parameter uniformly with respect to the initial datum. This is obtained through an Alikakos-Moser type argument. We establish a similar result for the viscous nonlocal Cahn-Hilliard equation with singular (e.g., logarithmic) potential. In this case the validity of the so-called separation property is crucial. We also discuss the convergence of a solution to a single stationary state. The separation property in the nonviscous case is known to hold when the mobility degenerates at the pure phases in a proper way and the potential is of logarithmic type. Thus, the existence of an exponential attractor can be proven in this case as well.
110 - Siming He , Eitan Tadmor 2019
We study the regularity and large-time behavior of a crowd of species driven by chemo-tactic interactions. What distinguishes the different species is the way they interact with the rest of the crowd: the collective motion is driven by different chemical reactions which end up in a coupled system of parabolic Patlak-Keller-Segel equations. We show that the densities of the different species diffuse to zero provided the chemical interactions between the different species satisfy certain sub-critical condition; the latter is intimately related to a log-Hardy-Littlewood-Sobolev inequality for systems due to Shafrir & Wolansky. Thus for example, when two species interact, one of which has mass less than $4pi$, then the 2-system stays smooth for all time independent of the total mass of the system, in sharp contrast with the well-known breakdown of one specie with initial mass$> 8pi$.
59 - W.P. Yan 2018
In this paper, we consider the explicit wave-breaking mechanism and its dynamical behavior near this singularity for the generalized b-equation. This generalized b-equation arises from the shallow water theory, which includes the Camassa-Holm equation, the Degasperis-Procesi equation, the Fornberg-Whitham equation, the Korteweg-de Vires equation and the classical b-equation. More precisely, we find that there exists an explicit self-similar blowup solution for the generalized b-equation. Meanwhile, this self-similar blowup solution is asymptotic stability in a parameters domain, but instability in other parameters domain.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا