Do you want to publish a course? Click here

Multi-phase competition in quantum $XY$ pyrochlore antiferromagnet CdYb$_{2}$Se$_{4}$: zero and applied magnetic field study

55   0   0.0 ( 0 )
 Added by Guratinder Kaur
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study magnetic behaviour of the Yb$^{3+}$ ions on a frustrated pyrochlore lattice in the spinel {CYS}. The crystal-electric field parameters deduced from high-energy inelastic neutron scattering reveal well-isolated ytterbium ground state doublet with a weakly Ising character. Magnetic order studied by powder neutron diffraction evolves from the $XY$-type antiferromagnetic $Gamma_5$ state to a splayed ice-like ferromagnet (both with k=0) in applied magnetic field with $B_c$=3 T. Low-energy inelastic neutron scattering identifies weakly dispersive magnetic bands around 0.72 meV starting at $midbf{Q}mid$ = 1.1 AA$^{-1}$~ at zero field, which diminish with field and vanish above 3 T. We explain the observed magnetic behaviour in framework of the nearest-neighbour anisotropic exchange model for effective $S=1/2$ Kramers doublets on the pyrochlore lattice. The estimated exchanges position the {CYS} spinel close to the phase boundary between the $Gamma_5$ and splayed ferromagnet states, similar to the Yb-pyrochlores suggesting an important role of the competition between these phases.



rate research

Read More

We explore the field-temperature phase diagram of the XY pyrochlore antiferromagnet Er$_2$Ti$_2$O$_7$, by means of magnetization and neutron diffraction experiments. Depending on the field strength and direction relative to the high symmetry cubic directions $[001], [1bar{1}0]$ and $[111]$, the refined field induced magnetic structures are derived from the zero field $psi_2$ and $psi_3$ states of the $Gamma_5$ irreducible representation which describes the ground state of XY pyrochlore antiferromagnets. At low field, domain selection effects are systematically at play. In addition, for $[001]$, a phase transition is reported towards a $psi_3$ structure at a characteristic field $H_c^{001}=$ 43 mT. For $[1bar{1}0]$ and $[111]$, the spins are continuously tilted by the field from the $psi_2$ state, and no phase transition is found while domain selection gives rise to sharp anomalies in the field dependence of the Bragg peaks intensity. For $[1bar{1}0]$, these results are confirmed by high resolution inelastic neutron scattering experiments, which in addition allow us to determine the field dependence of the spin gap. This study agrees qualitatively with the scenario proposed theoretically by Maryasin {it et al.} [Phys. Rev. B {bf 93}, 100406(R) (2016)], yet the strength of the field induced anisotropies is significantly different from theory.
ersn, is considered, together with erti, as a realization of the XY antiferromagnet on the pyrochlore lattice. We present magnetization measurements confirming that ersn, does not order down to 100 mK but exhibits a freezing below 200 mK. Our neutron scattering experiments evidence the strong XY character of the er moment and point out the existence of short range correlations in which the magnetic moments are in peculiar configurations, the Palmer-Chalker states, predicted theoretically for an XY pyrochlore antiferromagnet with dipolar interactions. Our estimation of the ersn, parameters confirm the role of the latter interactions on top of relatively weak and isotropic exchange couplings.
The XY-pyrochlore antiferromagnet ETO is studied by heat capacity measurements and electron spin resonance spectroscopy performed on single crystal samples. The magnetic phase diagrams are established for two directions of applied field, $Hparallel [100]$ and $Hparallel [111]$. In the magnetically ordered phase observed below $T_N=1.2$ K, the magnetic excitation spectrum consists of a Goldstone mode acquiring an isotropic gap in an applied field, and another mode with a gap softening in the vicinity of a field-induced phase transition. This second-order transition takes place at a critical field $H_c$ above which the magnetization process is accompanied by a canting of the magnetic moments off their local easy-planes. The specific heat curves for $Hparallel [100]$ ($Hgg H_c$) are well described by a model presuming a single dispersionless excitation mode with the energy gap obtained from the spectroscopic measurements.
177 - S. Nellutla , M. Pati , Y.-J. Jo 2009
The magnetic properties of alkali-metal peroxychromate K$_2$NaCrO$_8$ are governed by the $S = 1/2$ pentavalent chromium cation, Cr$^{5+}$. Specific heat, magnetocalorimetry, ac magnetic susceptibility, torque magnetometry, and inelastic neutron scattering data have been acquired over a wide range of temperature, down to 60 mK, and magnetic field, up to 18 T. The magnetic interactions are quasi-two-dimensional prior to long-range ordering, where $T_N = 1.66$ K in $H = 0$. In the $T to 0$ limit, the magnetic field tuned antiferromagnetic-ferromagnetic phase transition suggests a critical field $H_c = 7.270$ T and a critical exponent $alpha = 0.481 pm 0.004$. The neutron data indicate the magnetic interactions may extend over intra-planar nearest-neighbors and inter-planar next-nearest-neighbor spins.
We report on the synthesis of a new $gamma$-phase of the spin $S$~=~$frac{3}{2}$ compound SrCo$_2$(PO$_4$)$_2$ together with a detailed structural, magnetic and thermodynamic properties. The $gamma$-phase of SrCo$_2$(PO$_4$)$_2$ crystallizes in a triclinic crystal structure with the space group $Pbar{1}$. Susceptibility and specific heat measurements reveal that SrCo$_2$(PO$_4$)$_2$ orders antiferromagnetically below $T_{rm N}simeq 8.5$,K and the nature of ordering is three dimensional (3D). The magnetic isotherm at temperatures below $T_{rm N}$ shows a field-induced spin-flop transition, related to the magnetocrystalline anisotropy, at an applied field of $sim$~4.5~Tesla. Remarkably, heat capacity shows magnetic-field-induced transitions at $T_{rm N1}$ = 3.6 K and $T_{rm N2}$ = 7.4 K. The magnetic long range ordering (LRO) is also confirmed in both the Knight shift and spin-lattice relaxation rate ($1/T_{1}$) of the $^{31}$P-NMR measurements. However, below the LRO we have not detected any NMR signal due to faster relaxation. We have detected two structurally different phosphorous sites in $gamma$-phase of SrCo$_{2}$(PO$_{4}$)$_{2}$ and they shift differently with temperature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا