No Arabic abstract
We discuss the difference between various gauge-invariant quantities typically used in single-field inflation, namely synchronous $zeta_s$, comoving $zeta_c$, and unitary $zeta_u$ curvatures. We show that conservation of $zeta_c$ outside the horizon is quite restrictive on models as it leads to conservation of $zeta_s$ and $zeta_u$, whereas the reverse does not hold. We illustrate the consequence of these differences with two inflationary models: ultra-slow-roll (USR) and braiding-ultra-slow-roll (BUSR). In USR, we show that out of the three curvatures, only $zeta_s$ is conserved outside the horizon, and we connect this result to the concepts of separate universe and the usage of the $delta N$ formalism. We find that even though $zeta_s$ is conserved, there is still a mild violation of the separate universe approximation in the continuity equation. Nevertheless, the $delta N$ formalism can still be applied to calculate the primordial power spectrum of some gauge-invariant quantities such as $zeta_u$, although it breaks down for others such as the uniform-density curvature. In BUSR, we show that both $zeta_u$ and $zeta_s$ are conserved outside the horizon, but take different values. Additionally, since $zeta_u ot=zeta_c$ we find that the prediction for observable curvature fluctuations after inflation does not reflect $zeta_c$ at horizon crossing during inflation and moreover involves not just $zeta_u$ at that epoch but also the manner in which the braiding phase ends.
The effective field theory (EFT) of cosmological perturbations is a useful framework to deal with the low-energy degrees of freedom present for inflation and dark energy. We review the EFT for modified gravitational theories by starting from the most general action in unitary gauge that involves the lapse function and the three-dimensional geometric scalar quantities appearing in the Arnowitt-Deser-Misner (ADM) formalism. Expanding the action up to quadratic order in the perturbations and imposing conditions for the elimination of spatial derivatives higher than second order, we obtain the Lagrangian of curvature perturbations and gravitational waves with a single scalar degree of freedom. The resulting second-order Lagrangian is exploited for computing the scalar and tensor power spectra generated during inflation. We also show that the most general scalar-tensor theory with second-order equations of motion-Horndeski theory-belongs to the action of our general EFT framework and that the background equations of motion in Horndeski theory can be conveniently expressed in terms of three EFT parameters. Finally we study the equations of matter density perturbations and the effective gravitational coupling for dark energy models based on Horndeski theory, to confront the models with the observations of large-scale structures and weak lensing.
We investigate the structure formation in the effective field theory of the holographic dark energy. The equation of motion for the energy contrast $delta_m$ of the cold dark matter is the same as the one in the general relativity up to the leading order in the small scale limit $kgg aH$, provided the equation of state is Quintessence-like. Our effective field theory breaks down while the equation of state becomes phantom-like. We propose a solution to this problem by eliminating the scalar graviton.
By making a suitable generalization of the Starobinsky stochastic inflation, we propose a classical phase space formulation of stochastic inflation which may be used for a quantitative study of decoherence of cosmological perturbations during inflation. The precise knowledge of how much cosmological perturbations have decohered is essential to the understanding of acoustic oscillations of cosmological microwave background (CMB) photons. In order to show how the method works, we provide the relevant equations for a self-interacting inflaton field. For pedagogical reasons and to provide a link to the field theoretical case, we consider the quantum stochastic harmonic oscillator.
Studying the effects of dark energy and modified gravity on cosmological scales has led to a great number of physical models being developed. The effective field theory (EFT) of cosmic acceleration allows an efficient exploration of this large model space, usually carried out on a phenomenological basis. However, constraints on such parametrized EFT coefficients cannot be trivially connected to fundamental covariant theories. In this paper we reconstruct the class of covariant Horndeski scalar-tensor theories that reproduce the same background dynamics and linear perturbations as a given EFT action. One can use this reconstruction to interpret constraints on parametrized EFT coefficients in terms of viable covariant Horndeski theories. We demonstrate this method with a number of well-known models and discuss a range of future applications.
We discuss mimetic gravity theories with direct couplings between the curvature and higher derivatives of the scalar field, up to the quintic order, which were proposed to solve the instability problem for linear perturbations around the FLRW background for this kind of models. Restricting to homogeneous scalar field configurations in the action, we derive degeneracy conditions to obtain an effective field theory with three degrees of freedom. However, performing the Hamiltonian analysis for a generic scalar field we show that there are in general four or more degrees of freedom. The discrepancy is resolved because, for a homogeneous scalar field profile, $partial_ivarphiapprox 0$, the Dirac matrix becomes singular, resulting in further constraints, which reduces the number of degrees of freedom to three. Similarly, in linear perturbation theory the additional scalar degree of freedom can only be seen by considering a non-homogeneous background profile of the scalar field. Therefore, restricting to homogeneous scalar fields these kinds of models provide viable explicitly Lorentz violating effective field theories of mimetic gravity.