Do you want to publish a course? Click here

Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). X. Discovery of 35 Quasars and Luminous Galaxies at 5.7 $le$ z $le$ 7.0

514   0   0.0 ( 0 )
 Added by Yoshiki Matsuoka
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the discovery of 28 quasars and 7 luminous galaxies at 5.7 $le$ z $le$ 7.0. This is the tenth in a series of papers from the Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs) project, which exploits the deep multi-band imaging data produced by the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey. The total number of spectroscopically identified objects in SHELLQs has now grown to 93 high-z quasars, 31 high-z luminous galaxies, 16 [O III] emitters at z ~ 0.8, and 65 Galactic cool dwarfs (low-mass stars and brown dwarfs). These objects were found over 900 deg2, surveyed by HSC between 2014 March and 2018 January. The full quasar sample includes 18 objects with very strong and narrow Ly alpha emission, whose stacked spectrum is clearly different from that of other quasars or galaxies. While the stacked spectrum shows N V 1240 emission and resembles that of lower-z narrow-line quasars, the small Ly alpha width may suggest a significant contribution from the host galaxies. Thus these objects may be composites of quasars and star-forming galaxies.



rate research

Read More

We report discovery of 41 new high-z quasars and luminous galaxies, which were spectroscopically identified at 5.7 < z < 6.9. This is the fourth in a series of papers from the Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs) project, based on the deep multi-band imaging data collected by the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey. We selected the photometric candidates by a Bayesian probabilistic algorithm, and then carried out follow-up spectroscopy with the Gran Telescopio Canarias and the Subaru Telescope. Combined with the sample presented in the previous papers, we have now spectroscopically identified 137 extremely-red HSC sources over about 650 deg2, which include 64 high-z quasars, 24 high-z luminous galaxies, 6 [O III] emitters at z ~ 0.8, and 43 Galactic cool dwarfs (low-mass stars and brown dwarfs). The new quasars span the luminosity range from M1450 ~ -26 to -22 mag, and continue to populate a few magnitude lower luminosities than have been probed by previous wide-field surveys. In a companion paper, we derive the quasar luminosity function at z ~ 6 over an unprecedentedly wide range of M1450 ~ -28 to -21 mag, exploiting the SHELLQs and other survey outcomes.
We present spectroscopic identification of 32 new quasars and luminous galaxies discovered at 5.7 < z < 6.8. This is the second in a series of papers presenting the results of the Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs) project, which exploits the deep multi-band imaging data produced by the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey. The photometric candidates were selected by a Bayesian probabilistic algorithm, and then observed with spectrographs on the Gran Telescopio Canarias and the Subaru Telescope. Combined with the sample presented in the previous paper, we have now identified 64 HSC sources over about 430 deg2, which include 33 high-z quasars, 14 high-z luminous galaxies, 2 [O III] emitters at z ~ 0.8, and 15 Galactic brown dwarfs. The new quasars have considerably lower luminosity (M1450 ~ -25 to -22 mag) than most of the previously known high-z quasars. Several of these quasars have luminous (> 10^(43) erg/s) and narrow (< 500 km/s) Ly alpha lines, and also a possible mini broad absorption line system of N V 1240 in the composite spectrum, which clearly separate them from typical quasars. On the other hand, the high-z galaxies have extremely high luminosity (M1450 ~ -24 to -22 mag) compared to other galaxies found at similar redshift. With the discovery of these new classes of objects, we are opening up new parameter spaces in the high-z Universe. Further survey observations and follow-up studies of the identified objects, including the construction of the quasar luminosity function at z ~ 6, are ongoing.
We present deep near-infrared spectroscopy of six quasars at 6.1<z<6.7 with VLT/X-Shooter and Gemini-N/GNIRS. Our objects, originally discovered through a wide-field optical survey with the Hyper Suprime-Cam (HSC) Subaru Strategic Program (HSC-SSP), have the lowest luminosities (-25.5< M1450<-23.1 mag) of the z>5.8 quasars with measured black hole masses. From single-epoch mass measurements based on MgII2798, we find a wide range in black hole masses, from M_BH=10^7.6 to 10^9.3 Msun. The Eddington ratios L_bol/L_Edd range from 0.16 to 1.1, but the majority of the HSC quasars are powered by M_BH=10^9 Msun supermassive black holes (SMBHs) accreting at sub-Eddington rates. The Eddington ratio distribution of the HSC quasars is inclined to lower accretion rates than those of Willott et al. (2010a), who measured the black hole masses for similarly faint z=6 quasars. This suggests that the global Eddington ratio distribution is wider than has previously been thought. The presence of M_BH=10^9 Msun SMBHs at z=6 cannot be explained with constant sub-Eddington accretion from stellar remnant seed black holes. Therefore, we may be witnessing the first buildup of the most massive black holes in the first billion years of the universe, the accretion activity of which is transforming from active growth to a quiescent phase. Measurements of a larger complete sample of z>6 low-luminosity quasars, as well as deeper observations with future facilities will enable us to better understand the early SMBH growth in the reionization epoch.
We present deep Keck/MOSFIRE near-infrared spectroscopy of a strong Lyman alpha emitting source at z=6.1292, HSC J142331.71-001809.1, which was discovered by the SHELLQS program from imaging data of the Subaru Hyper Suprime-Cam (HSC) survey. This source is one of five objects that show unresolved (<230 km s-1) and prominent (>10^44 erg s-1) Lyman alpha emission lines at absolute 1450 angstrom continuum magnitudes of M1450~-22 mag. Its rest-frame Lyman alpha equivalent width (EW) is 370+/-30 angstrom. In the 2 hour Keck/MOSFIRE spectrum in Y band, the high-ionization CIV 1548,1550 doublet emission line was clearly detected with FWHM =120+/-20 km s-1 and a total rest-frame EW of 37-5+6 angstrom. We also report the detection of weak continuum emission, and the tentative detection of OIII] 1661,1666 in the 4 hour J band spectrum. Judging from the UV magnitude, line widths, luminosities, and EWs of Lyman alpha and CIV, we suggest that this source is a reionization-era analog of classical type-II AGNs, although there is a possibility that it represents a new population of AGN/galaxy composite objects in the early universe. We compare the properties of J1423-0018 to intermediate-redshift type-II AGNs and CIV emitters seen in z=6-7 galaxy samples. Further observations of other metal emission lines in the rest-frame UV or optical, and X-ray follow-up observations of the z=6-7 narrow-line quasars are needed for more robust diagnostics and to determine their nature.
We present new measurements of the quasar luminosity function (LF) at $z sim 6$, over an unprecedentedly wide range of the rest-frame ultraviolet luminosity $M_{1450}$ from $-30$ to $-22$ mag. This is the fifth in a series of publications from the Subaru High-$z$ Exploration of Low-Luminosity Quasars (SHELLQs) project, which exploits the deep multi-band imaging data produced by the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey. The LF was calculated with a complete sample of 110 quasars at $5.7 le z le 6.5$, which includes 48 SHELLQs quasars discovered over 650 deg$^2$, and 63 brighter quasars discovered by the Sloan Digital Sky Survey and the Canada-France-Hawaii Quasar Survey (including one overlapping object). This is the largest sample of $z sim 6$ quasars with a well-defined selection function constructed to date, and has allowed us to detect significant flattening of the LF at its faint end. A double power-law function fit to the sample yields a faint-end slope $alpha = -1.23^{+0.44}_{-0.34}$, a bright-end slope $beta = -2.73^{+0.23}_{-0.31}$, a break magnitude $M_{1450}^* = -24.90^{+0.75}_{-0.90}$, and a characteristic space density $Phi^* = 10.9^{+10.0}_{-6.8}$ Gpc$^{-3}$ mag$^{-1}$. Integrating this best-fit model over the range $-18 < M_{1450} < -30$ mag, quasars emit ionizing photons at the rate of $dot{n}_{rm ion} = 10^{48.8 pm 0.1}$ s$^{-1}$ Mpc$^{-3}$ at $z = 6.0$. This is less than 10 % of the critical rate necessary to keep the intergalactic medium ionized, which indicates that quasars are not a major contributor to cosmic reionization.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا