Electrodynamics of tilted Dirac/Weyl materials: A unique platform for unusual surface plasmon polaritons


Abstract in English

The electrodynamics of Weyl semimetals (WSMs) is an extension of Maxwells theory where in addition to field strength tensor $F_{mu u}$, an axion field enters the theory which is parameterized by a four-vector $b^mu=(b_0,bf b)$. In the tilted Weyl matter (TWM) an additional set of parameters ${bfzeta}=(zeta_x,zeta_y,zeta_z)$ enter the theory that can be encoded into the metric of the spacetime felt by electrons in TWM. This allows an extension of Maxwells electrodynamics that describes electric and magnetic fields in TWMs and tilted Dirac material (TDM) when $b^mu=0$. The tilt parameter $bfzeta$ appearing as off-diagonal metric entries mixing time and space components mingles $bf E$ and $bf B$ fields whereby modifies the inhomogeneous Maxwells equations. Surface plasmon polariton (SPP) in these systems describes the propagation of electromagnetic waves at the {it interface of two different spacetime geometries}. In the case of TDM, we find a characteristic dependence of SPP spectrum on the tilt parameter $zeta$ which can be used map $zeta$ from SPP measurements. In the case of TWM, depending on whether the interface with vacuum supports a Fermi arc or not, and whether the propagation direction is along the Fermi arc or transverse to it, we find many unusual spectral features for SPP modes. Our detailed study of the dependence of SPP spectra on the arrangements of three vectors $(bf b, q,zeta)$, the first two of which are at our control, can be utilized to map the tilt characteristics and Fermi arc characteristics from SPP measurements.

Download