Do you want to publish a course? Click here

The Landscape of Minimum Label Cut (Hedge Connectivity) Problem

136   0   0.0 ( 0 )
 Added by Rupei Xu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Minimum Label Cut (or Hedge Connectivity) problem is defined as follows: given an undirected graph $G=(V, E)$ with $n$ vertices and $m$ edges, in which, each edge is labeled (with one or multiple labels) from a label set $L={ell_1,ell_2, ..., ell_{|L|}}$, the edges may be weighted with weight set $W ={w_1, w_2, ..., w_m}$, the label cut problem(hedge connectivity) problem asks for the minimum number of edge sets(each edge set (or hedge) is the edges with the same label) whose removal disconnects the source-sink pair of vertices or the whole graph with minimum total weights(minimum cardinality for unweighted version). This problem is more general than edge connectivity and hypergraph edge connectivity problem and has a lot of applications in MPLS, IP networks, synchronous optical networks, image segmentation, and other areas. However, due to limited communications between different communities, this problem was studied in different names, with some important existing literature citations missing, or sometimes the results are misleading with some errors. In this paper, we make a further investigation of this problem, give uniform definitions, fix existing errors, provide new insights and show some new results. Specifically, we show the relationship between non-overlapping version(each edge only has one label) and overlapping version(each edge has multiple labels), by fixing the error in the existing literature; hardness and approximation performance between weighted version and unweighted version and some useful properties for further research.



rate research

Read More

128 - Rupei Xu , Warren Shull 2020
Connectivity is a central notion of graph theory and plays an important role in graph algorithm design and applications. With emerging new applications in networks, a new type of graph connectivity problem has been getting more attention--hedge connectivity. In this paper, we consider the model of hedge graphs without hedge overlaps, where edges are partitioned into subsets called hedges that fail together. The hedge connectivity of a graph is the minimum number of hedges whose removal disconnects the graph. This model is more general than the hypergraph, which brings new computational challenges. It has been a long open problem whether this problem is solvable in polynomial time. In this paper, we study the combinatorial properties of hedge graph connectivity without hedge overlaps, based on its extremal conditions as well as hedge contraction operations, which provide new insights into its algorithmic progress.
In this work, we resolve the query complexity of global minimum cut problem for a graph by designing a randomized algorithm for approximating the size of minimum cut in a graph, where the graph can be accessed through local queries like {sc Degree}, {sc Neighbor}, and {sc Adjacency} queries. Given $epsilon in (0,1)$, the algorithm with high probability outputs an estimate $hat{t}$ satisfying the following $(1-epsilon) t leq hat{t} leq (1+epsilon) t$, where $m$ is the number of edges in the graph and $t$ is the size of minimum cut in the graph. The expected number of local queries used by our algorithm is $minleft{m+n,frac{m}{t}right}mbox{poly}left(log n,frac{1}{epsilon}right)$ where $n$ is the number of vertices in the graph. Eden and Rosenbaum showed that $Omega(m/t)$ many local queries are required for approximating the size of minimum cut in graphs. These two results together resolve the query complexity of the problem of estimating the size of minimum cut in graphs using local queries. Building on the lower bound of Eden and Rosenbaum, we show that, for all $t in mathbb{N}$, $Omega(m)$ local queries are required to decide if the size of the minimum cut in the graph is $t$ or $t-2$. Also, we show that, for any $t in mathbb{N}$, $Omega(m)$ local queries are required to find all the minimum cut edges even if it is promised that the input graph has a minimum cut of size $t$. Both of our lower bound results are randomized, and hold even if we can make {sc Random Edge} query apart from local queries.
We present a practically efficient algorithm for maintaining a global minimum cut in large dynamic graphs under both edge insertions and deletions. While there has been theoretical work on this problem, our algorithm is the first implementation of a fully-dynamic algorithm. The algorithm uses the theoretical foundation and combines it with efficient and finely-tuned implementations to give an algorithm that can maintain the global minimum cut of a graph with rapid update times. We show that our algorithm gives up to multiple orders of magnitude speedup compared to static approaches both on edge insertions and deletions.
We study the minimum backlog problem (MBP). This online problem arises, e.g., in the context of sensor networks. We focus on two main variants of MBP. The discrete MBP is a 2-person game played on a graph $G=(V,E)$. The player is initially located at a vertex of the graph. In each time step, the adversary pours a total of one unit of water into cups that are located on the vertices of the graph, arbitrarily distributing the water among the cups. The player then moves from her current vertex to an adjacent vertex and empties the cup at that vertex. The players objective is to minimize the backlog, i.e., the maximum amount of water in any cup at any time. The geometric MBP is a continuous-time version of the MBP: the cups are points in the two-dimensional plane, the adversary pours water continuously at a constant rate, and the player moves in the plane with unit speed. Again, the players objective is to minimize the backlog. We show that the competitive ratio of any algorithm for the MBP has a lower bound of $Omega(D)$, where $D$ is the diameter of the graph (for the discrete MBP) or the diameter of the point set (for the geometric MBP). Therefore we focus on determining a strategy for the player that guarantees a uniform upper bound on the absolute value of the backlog. For the absolute value of the backlog there is a trivial lower bound of $Omega(D)$, and the deamortization analysis of Dietz and Sleator gives an upper bound of $O(Dlog N)$ for $N$ cups. Our main result is a tight upper bound for the geometric MBP: we show that there is a strategy for the player that guarantees a backlog of $O(D)$, independently of the number of cups.
We study two variants of textsc{Maximum Cut}, which we call textsc{Connected Maximum Cut} and textsc{Maximum Minimal Cut}, in this paper. In these problems, given an unweighted graph, the goal is to compute a maximum cut satisfying some connectivity requirements. Both problems are known to be NP-complete even on planar graphs whereas textsc{Maximum Cut} on planar graphs is solvable in polynomial time. We first show that these problems are NP-complete even on planar bipartite graphs and split graphs. Then we give parameterized algorithms using graph parameters such as clique-width, tree-width, and twin-cover number. Finally, we obtain FPT algorithms with respect to the solution size.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا