No Arabic abstract
Fast radio bursts (FRBs) are bright, unresolved, millisecond-duration flashes of radio emission originating from outside of the Milky Way. The source of these mysterious outbursts is unknown, but their high luminosity, high dispersion measure and short duration requires an extreme, high-energy, astrophysical process. The majority of FRBs have been discovered as single events which would require a chance coincidence for contemporaneous multiwavelength observations. However, two have been observed to repeat: FRB 121102 and the recently detected FRB 180814.J0422+73. These repeating FRBs have allowed for targeted observations by a number of different instruments, including VERITAS. We present the VERITAS FRB observing program and the results of these observations.
Fast radio burst (FRBs) are an exciting class of bright, extragalactic, millisecond radio transients. The recent development of large field-of-view (FOV) radio telescopes has caused a rapid rise in the number of identified single burst and repeating FRBs. This has allowed for the extensive multi-wavelength follow-up to search for the potential counterparts predicted by theoretical models. New observations of similar radio transients in Galactic magnetars like SGR 1935+2154 have continued to motivate the search for rapid optical and very-high-energy (VHE, >100 GeV) counterparts. Since 2016 VERITAS has engaged in an FRB observing campaign to search for the prompt optical, and VHE emission from multiple repeating FRBs. We present these new results from VERITAS observations of five repeating sources including data taken simultaneously with bursts observed by the CHIME radio telescope.
The origin and phenomenology of the Fast Radio Burst (FRB) remains unknown despite more than a decade of efforts. Though several models have been proposed to explain the observed data, none is able to explain alone the variety of events so far recorded. The leading models consider magnetars as potential FRB sources. The recent detection of FRBs from the galactic magnetar SGR J1935+2154 seems to support them. Still, emission duration and energetic budget challenge all these models. Like for other classes of objects initially detected in a single band, it appeared clear that any solution to the FRB enigma could only come from a coordinated observational and theoretical effort in an as wide as possible energy band. In particular, the detection and localisation of optical/NIR or/and high-energy counterparts seemed an unavoidable starting point that could shed light on the FRB physics. Multiwavelength (MWL) search campaigns were conducted for several FRBs, in particular for repeaters. Here we summarize the observational and theoretical results and the perspectives in view of the several new sources accurately localised that will likely be identified by various radio facilities worldwide. We conclude that more dedicated MWL campaigns sensitive to the millisecond--minute timescale transients are needed to address the various aspects involved in the identification of FRB counterparts. Dedicated instrumentation could be one of the key points in this respect. In the optical/NIR band, fast photometry looks to be the only viable strategy. Additionally, small/medium size radiotelescopes co-pointing higher energies telescopes look a very interesting and cheap complementary observational strategy.
We report on a systematic search for hard X-ray and gamma-ray emission in coincidence with fast radio bursts (FRBs) observed by the AGILE satellite. We used 13 years of AGILE archival data searching for time coincidences between exposed FRBs and events detectable by the MCAL (0.4-100 MeV) and GRID (50 MeV-30 GeV) detectors at timescales ranging from milliseconds to days/weeks. The current AGILE sky coverage allowed us to extend the search for high-energy emission preceding and following the FRB occurrence. We considered all FRBs sources currently included in catalogues, and identified a sub-sample (15 events) for which a good AGILE exposure either with MCAL or GRID was obtained. In this paper we focus on non-repeating FRBs, compared to a few nearby repeating sources. We did not detect significant MeV or GeV emission from any event. Our hard X-ray upper limits (ULs) in the MeV energy range were obtained for timescales from sub-millisecond to seconds, and in the GeV range from minutes to weeks around event times. We focus on a sub-set of 5 non-repeating and 2 repeating FRB sources whose distances are most likely smaller than that of 180916.J0158+65 (150 Mpc). For these sources, our MeV ULs translate into ULs on the isotropically-emitted energy of about 3x10^46 erg, comparable to that observed in the 2004 giant flare from the Galactic magnetar SGR 1806-20. On average, these nearby FRBs emit radio pulses of energies significantly larger than the recently detected SGR 1935+2154 and are not yet associated with intense MeV flaring.
We investigate whether current data on the distribution of observed flux densities of Fast Radio Bursts (FRBs) are consistent with a constant source density in Euclidean space. We use the number of FRBs detected in two surveys with different characteristics along with the observed signal-to-noise ratios of the detected FRBs in a formalism similar to a V/V_max-test to constrain the distribution of flux densities. We find consistency between the data and a Euclidean distribution. Any extension of this model is therefore not data-driven and needs to be motivated separately. As a byproduct we also obtain new improved limits for the FRB rate at 1.4 GHz, which had not been constrained in this way before.
Fast radio bursts (FRB) are millisecond-duration radio pulses with apparent extragalactic origins. All but two of the FRBs have been discovered using the Parkes dish which employs multiple beams formed by an array of feed horns on its focal plane. In this paper, we show that (i) the preponderance of multiple-beam detections, and (ii) the detection rates for varying dish diameters, can be used to infer the index $alpha$ of the cumulative fluence distribution function (the log$N$-log$F$ function: $alpha=1.5$ for a non-evolving population in a Euclidean universe). If all detected FRBs arise from a single progenitor population, multiple-beam FRB detection rates from the Parkes telescope yield the constraint $0.52<alpha<1.0$ with $90$% confidence. Searches at other facilities with different dish sizes refine the constraint to $0.66<alpha<0.96$. Our results favor FRB searches with smaller dishes, because for $alpha<1$, the gain in field-of-view for a smaller dish is more important than the reduction in sensitivity. Further, our results suggest that (i) FRBs are not standard candles, and (ii) the distribution of distances to the detected FRBs is weighted towards larger distances. If FRBs are extragalactic, these results are consistent with a cosmological population, which would make FRBs excellent probes of the baryonic content and geometry of the Universe.