Do you want to publish a course? Click here

Opposite polarity magnetic field and convective downflows in a simulated sunspot penumbra

66   0   0.0 ( 0 )
 Added by Lokesh Bharti Dr.
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent numerical simulations and observations of sunspots show a significant amount of opposite polarity magnetic field within the sunspot penumbra. Most of the opposite polarity field is associated with convective downflows. We present an analysis of 3D MHD simulations through forward modeling of synthetic Stokes profiles of the Fesci 6301.5 AA~ and Fesci 6302.5 AA~ lines). The synthetic Stokes profiles are spatially and spectrally degraded considering typical instrument properties. Line bisector shifts of the Fesci 6301.5 AA~ line are used to determine line-of-sight velocities. Far wing magnetograms are constructed from the Stokes V profiles of the Fesci 6302.5 AA~ line. While we find an overall good agreement between observations and simulations, the fraction of opposite polarity magnetic field, the downflow filling factor and the opposite polarity-downflow association are strongly affected by spatial smearing and presence of strong gradients in the line-of-sight magnetic field and velocity. A significant fraction of opposite polarity magnetic field and downflows are hidden in the observations due to typical instrumental noise. Comparing simulations that differ by more than a factor of two in grid spacing we find that these quantities are robust within the simulations.



rate research

Read More

The fine-structure of magnetic field of a sunspot penumbra in the upper chromosphere is to be explored and compared to that in the photosphere. High spatial resolution spectropolarimetric observations were recorded with the 1.5-meter GREGOR telescope using the GREGOR Infrared Spectrograph (GRIS). The observed spectral domain includes the upper chromospheric He I triplet at 1083.0 nm and the photospheric Si I 1082.7 nm and Ca I 1083.3 nm spectral lines. The upper chromospheric magnetic field is obtained by inverting the He I triplet assuming a Milne-Eddington type model atmosphere. A height dependent inversion was applied to the Si I 1082.7 nm and Ca I 1083.3 nm lines to obtain the photospheric magnetic field. We find that the inclination of the magnetic field shows variations in the azimuthal direction both in the photosphere, but also in the upper chromosphere. The chromospheric variations remarkably well coincide with the variations in the inclination of the photospheric field and resemble the well-known spine and inter-spine structure in the photospheric layers of penumbrae. The typical peak-to-peak variations in the inclination of the magnetic field in the upper chromosphere is found to be 10-15 degree, i.e., roughly half the variation in the photosphere. In contrast, the magnetic field strength of the observed penumbra does not show variations on small spatial scales in the upper chromosphere. Thanks to the high spatial resolution observations possible with the GREGOR telescope at 1.08 microns, we find that the prominent small-scale fluctuations in the magnetic field inclination, which are a salient part of the property of sunspot penumbral photospheres, also persist in the chromosphere, although at somewhat reduced amplitudes. Such a complex magnetic configuration may facilitate penumbral chromospheric dynamic phenomena, such as penumbral micro-jets or transient bright dots.
We study the velocity structure of penumbral filaments in the deep photosphere to obtain direct evidence for the convective nature of sunspot penumbrae. A sunspot was observed at high spatial resolution with the 1-m Swedish Solar Telescope in the deep photospheric C I 5380 {AA} absorption line. The Multi-Object Multi-Frame Blind Deconvolution (MOMFBD) method is used for image restoration and straylight is filtered out. We report here the discovery of clear redshifts in the C I 5380 {AA} line at multiple locations in sunspot penumbral filaments. For example, bright head of filaments show larger concentrated blueshift and are surrounded by darker, redshifted regions, suggestive of overturning convection. Elongated downflow lanes are also located beside bright penumbral fibrils. Our results provide the strongest evidence yet for the presence of overturning convection in penumbral filaments and highlight the need to observe the deepest layers of the penumbra in order to uncover the energy transport processes taking place there.
Penumbral Microjets (PMJs) are short-lived jets found in the penumbra of sunspots, first observed in wide-band Ca H-line observations as localized brightenings, and are thought to be caused by magnetic reconnection. Earlier work on PMJs has been focused on smaller samples of by-eye selected events and case studies. It is our goal to present an automated study of a large sample of PMJs to place the basic statistics of PMJs on a sure footing and to study the PMJ Ca II 8542 Angstrom spectral profile in detail. High spatial resolution and spectrally well-sampled observations in the Ca II 8542 Angstrom line obtained from the Swedish 1-m Solar Telescope (SST) are reduced by a Principle Component Analysis and subsequently used in the automated detection of PMJs using the simple learning algorithm k-Nearest Neighbour. PMJ detections were verified with co-temporal Ca H-line observations. A total of 453 tracked PMJ events were found, or 4253 PMJs detections tallied over all timeframes and a detection rate of 21 events per timestep. From these, an average length, width and lifetime of 640 km, 210 km and 90 s were obtained. The average PMJ Ca II 8542 Angstrom line profile is characterized by enhanced inner wings, often in the form of one or two distinct peaks, and a brighter line core as compared to the quiet Sun average. Average blue and red peak positions were determined at -10.4 km/s and +10.2 km/s offsets from the Ca II 8542 Angstrom line core. We found several clusters of PMJ hotspots within the sunspot penumbra, where PMJ events occur in the same general area repeatedly over time. Our results indicate smaller average PMJs sizes and longer lifetimes compared to previously published values, but with statistics still in the same orders of magnitude. The investigation and analysis of the PMJ line profiles strengthen the proposed heating of PMJs to transition region temperatures.
We study the velocity field of umbral dots at a resolution of 0.14. Our analysis is based on full Stokes spectropolarimetric measurements of a pore taken with the CRISP instrument at the Swedish 1-m Solar Telescope. We determine the flow velocity at different heights in the photosphere from a bisector analysis of the Fe I 630 nm lines. In addtion, we use the observed Stokes Q, U, and V profiles to characterize the magnetic properties of these structures. We find that most umbral dots are associated with strong upflows in deep photospheric layers. Some of them also show concentrated patches of downflows at their edges, with sizes of about 0.25, velocities of up to 1000 m/s, and enhanced net circular polarization signals. The downflows evolve rapidly and have lifetimes of only a few minutes. These results appear to validate numerical models of magnetoconvection in the presence of strong magnetic fields.
Sunspot penumbrae show high-velocity patches along the periphery. The high-velocity downflow patches are believed to be the return channels of the Evershed flow. We aim to investigate their structure in detail using Hinode SOT/SP observations. We employ Fourier interpolation in combination with spatially coupled height dependent LTE
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا