Rydberg mediated entanglement in a two-dimensional neutral atom qubit array


Abstract in English

We demonstrate high fidelity two-qubit Rydberg blockade and entanglement in a two-dimensional qubit array. The qubit array is defined by a grid of blue detuned lines of light with 121 sites for trapping atomic qubits. Improved experimental methods have increased the observed Bell state fidelity to $F_{rm Bell}=0.86(2)$. Accounting for errors in state preparation and measurement (SPAM) we infer a fidelity of $F_{rm Bell}^{rm -SPAM}=0.88$. Accounting for errors in single qubit operations we infer that a Bell state created with the Rydberg mediated $C_Z$ gate has a fidelity of $F_{rm Bell}^{C_Z}=0.89$. Comparison with a detailed error model based on quantum process matrices indicates that finite atom temperature and laser noise are the dominant error sources contributing to the observed gate infidelity.

Download