Laplacian algebras, manifold submetries and the Inverse Invariant Theory Problem


Abstract in English

Manifold submetries of the round sphere are a class of partitions of the round sphere that generalizes both singular Riemannian foliations, and the orbit decompositions by the orthogonal representations of compact groups. We exhibit a one-to-one correspondence between such manifold submetries and maximal Laplacian algebras, thus solving the Inverse Invariant Theory problem for this class of partitions. Moreover, a solution to the analogous problem is provided for two smaller classes, namely orthogonal representations of finite groups, and transnormal systems with closed leaves.

Download